新学習指導要領に基づく小学校教科書の

エネルギー・原子力関連記述

に関する調査と提言

-社会,理科の調査-

令和7年11月

一般社団法人 日本原子力学会 教育委員会

目 次

第	1章	: 調査の概要 1
	1.	調査の目的1
	2.	本報告書の概要3
	3.	調査した教科書3
第	2章	数科書記述への 5 項目の提言4
	1.	全般的な要望
	2.	教科書記述への 5 項目の提言4
	3.	提言内容の解説
第	3章	学習指導要領等の調査14
	1.	キーワード設定
	2.	学習指導要領等からの抜粋(概要)15
	3.	学習指導要領等からの抜粋(詳細)20
•	4章 5章	7.1.12
	1.	会議等開催記録
	2.	教科書調査担当者および教育委員会委員41
	3	これまでに分表した報告書

第1章 調査の概要

2011 (平成 23) 年 3 月 11 日に発生した東日本大震災に伴う東京電力福島第一原子力発電所事故から早くも 14 年が過ぎました。帰還環境の整備により避難指示の解除が進み、福島県土に占める避難指示等区域の面積は約 2.2%へ縮小したものの、復興への道筋は容易ではありません。(一社)日本原子力学会(以下、原子力学会)は事故により生業の中断や避難を強いられるなど被害を受けられた皆様に改めて心からお見舞いを申し上げますとともに、被災地の復興が順調に進展することをお祈りいたします。

1. 調査の目的

日本原子力学会教育委員会(以下、教育委員会)は、学会員の教育に関する調査・支援を行っており、その中に初等中等教育小委員会があります。同小委員会では、初等・中等教育の教科書におけるエネルギー・環境・原子力・放射線に関連した記述について、さらなる充実を図っていただくことを目的として、初等・中等教科書調査ワーキンググループを設置して、教科書の調査を行い、具体的な要望と提言を報告書としてまとめて公表してきました。

この活動は 1995 (平成 7) 年から現在まで約 29 年間にわたり、これまでに 19 冊の報告書を公表し、文部科学省をはじめ各教科書出版会社、(一社)教科書協会、教育界・学界などの関係各方面に提出しています。関係者がこれらの提言を評価され、教科書の編集に際して検討・反映いただくことなどにより、近年分かり易くかつ専門的な表現にも配慮された記述が増えてきたことを教科書出版会社へのアンケート調査等から確認しています。原子力学会のこのような活動が、社会に貢献できたことを大きな喜びとするものです。

2018 (平成 30) 年 3 月に小学校学習指導要領(以下,学習指導要領)が改訂されました。2024 (令和 6) 年度から小学校で使用されている教科書は,この新学習指導要領に基づいて編集され,2022 (令和 4) 年に検定を受け,全国自治体の各教育委員会が採択を決めたものです。表 1-1 に小・中・高等学校教科書の検定・採択の周期を示します。

教科書では、放射線の性質と利用、エネルギー資源としての原子力エネルギーの利用などのほか、東京電力福島第一原子力発電所事故も取り上げています。そこで、これらの教科書における放射線の性質と利用、世界各国および我が国のエネルギー資源、エネルギー、原子力利用などに関する記述のほか、事故から14年が経過した現状を踏まえ、同事故に関連した記述の調査を行い、教科書記述の一層の充実とエネルギーや原子力に関する教育の改善に繋げることを目的として意見・提言をまとめました。

表 1-1 小・中・高等学校教科書の検定・採択の周期

	(西曆) 種別等区分		H30 (2018)	H31/R元 (2019)	R2 (2020)	R3 (2021)	R4 (2022)	R5 (2023)	R6 (2024)	R7 (2025)	R8 (2026)
		検 定	0				0				0
小	学 校	採択	\triangle	\triangle				Δ			
		使用開始	•	0	0				0		
		検 定	0	0				0			
中	学 校	採 択	A	Δ	Δ				Δ		
		使用開始		•	0	0				0	
	主として	検 定		0	0				0		
	低学年用	採 択			Δ	Δ				Δ	
		使用開始				0	0				0
高等	主として 中学年用	検 定			0	0				0	
学		採 択				\triangle	Δ				\triangle
校		使用開始	0				0	0			
	主として	検 定				0	0				0
	高学年用	採 択	Δ				Δ	Δ			
		使用開始		0				0	0		

◎:検定年度

△:直近の検定で合格した教科書の初めての採択が行われる年度

○:使用開始年度(小・中学校は原則として4年ごと,高校は毎年度採択替え) ▲:直近の検定で合格した「特別の教科 道徳」の教科書の初めての採択が行 われる年度

●:「特別の教科 道徳」の使用開始年度

- ※ 小学校には義務教育学校の前期課程を、中学校には義務教育学校の後期課程及び中 等教育学校の前期課程を、高等学校には中等教育学校の後期課程を含む。
- ※ 小学校における平成30年度,中学校における平成31年度/令和元年度においては, 「特別の教科 道徳」を除く各教科の教科書について採択が行われた。
- ※ 太線以降は、学習指導要領改訂後の教育課程の実施に伴う教科書についてである。

文部科学省 HP より

20210326-mxt_kyokasyo01-100002546_01.pdf (mext.go.jp)

2. 本報告書の概要

本章第1節で調査の目的を述べています。

本章第3節で今回調査した教科書の件数を示します。

第2章では、後述の第3章および第4章の調査結果に基づき、教科書の記述の充実を図っていただきたいという要望を意見・提言として述べて、その解説をしています。第1節は5項目の提言の概要、第2節は各提言のやや詳しい解説です。

第3章では、小学校の新学習指導要領(解説を含む)について、原子力、放射線に関連する記述を抽出し、その抽出した内容を表としてまとめています。

第4章では、小学校の新学習指導要領の条項にある原子力、放射線に関連する各教科書の本文とコラム、脚注(側注)、図表の個別の記述内容とともに、第3章で示された学習指導要領(解説を含む)での記述との関連で、記述の適切性を含めて、調査担当者が協議して作成したコメント・修正文の案や例を示しています。

第5章は本調査の記録として、会議等開催記録、教科書調査担当者名および教育委員会委員名ならびにこれまでに公表した教科書調査報告書のリスト1)~19)を示しました。

3. 調査した教科書

小学校教科書として、2024(令和6)年度から使用されている社会および理科の検定済み教科書から以下の合計17件について調査しました。その内訳を以下に示します。

小学校社会 社会:6年 東書(2種), 教出, 日文 計4点

小学校社会 社会:5年 東書(2種), 教出, 日文 計4点

小学校社会 社会:4年 東書, 教出,日文 計3点

小学校理科 理科:6年 東書,大日本,学図,教出,信教,啓林館 計6点

合計 17 点

(注) 東書:東京書籍, 教出:教育出版, 日文:日本文教出版. 大日本:大日本図書,

学図:学校図書,信教:信州教育出版社, 啓林館:新興出版社啓林館

第2章 教科書記述への5項目の提言

第3章および第4章に記載する調査結果を踏まえて、最初に全般的な要望を述べ、続いて第 2節で5項目を提言します。第3節でそれぞれの項目についてのやや詳しい解説とその背景を 説明します。

1. 全般的な要望

どの教科書も分かり易い説明を目指して、出版社独自の種々の工夫が凝らされていることを高く評価します。特に、教科書で示されるデータ・図表は論点を適正にするための非常に重要な資料となりますので、可能な限り最新のデータ・図表の使用を望みます。また、本文に書けない各論的な事項を、発展的に解説する手段として、吹き出し、コラム、脚注などで多角的に示し学習効果を高めるのはとてもよいことであると推奨します。さらに、新学習指導要領が提唱する「主体的・対話的で深い学び」を具体的に実践するため、探究学習・調べ学習など発展的学習について、児童同士で気づいたこと等を話合いさせたり、インターネットで調べることを勧めている事例がいくつか見られました。児童自らが、物事を総合的に検討するきっかけになると考えるので推奨します。話合いや調べの中から児童自らの多角的な意見を引き出すような記述も望まれます。

2. 教科書記述への5項目の提言

提言1:わが国の電源構成における原子力発電の位置づけについて

今回調査した教科書には、原子力発電を扱っていないものがありました。しかし、原子力発電は日本の電源構成において重要な位置を占めています。2010年には約25%を占めていましたが、福島第一原子力発電所事故後に、いったんすべての原子力発電所を停止して、安全向上対策を実施しました。その後、安全向上対策が確認され地元了解が得られた発電所から再稼働し、2023年時点では約9%で火力・太陽光に次ぐ第3位となっています。第7次エネルギー基本計画では「脱炭素電源」として再生可能エネルギーと並び最大限活用することが明記され、2040年には約20%を目標としています。このため、原子力発電も発電方法の一つとして取り上げていただくことを希望します。

提言2:脱炭素電源としての原子力発電について

多くの教科書で地球温暖化問題が取り上げられていますが、二酸化炭素(CO_2)を出さない発電方法として、再生可能エネルギーのみが紹介されており、原子力発電を紹介する教科書はありませんでした。原子力発電は CO_2 を発生しませんし、昼夜・天候に関わらず安定して電力を供給できる、少量の燃料から大量のエネルギーを生み出せる、准国産エネルギーである(次項参照)など優れた特長を持っています。そのため、第7次エネルギー基本計画では、原子力発電を脱炭素電源として最大限活用することを明記しています。世界をみても、気候目標達成には原子力は不可欠であるとして、日本を含む31か国が2050年までに世界の原子力発電の設備容量を3倍にすることを宣言しています(原子力3倍宣言)。そこで、脱炭素電源としての原子力発電を取り上げていただくことを希望します。

提言3:準国産エネルギーとしての原子力について

原子力は、燃料投入量に対するエネルギー出力が圧倒的に大きく、数年にわたって国内保有燃料だけでエネルギー生産が維持でき、また、優れた安定供給性を有しており、エネルギー安全保障を確保する重要な手段の一つとなっています。このように、完全な国産ではないものの、輸入リスクが低く、安定供給が可能であるために「ほぼ国産」とみなされ、エネルギー安全保障に寄与するエネルギーのことを準国産エネルギーと言います。そこで、原子力が準国産エネルギーとしてエネルギー安全保障に寄与するエネルギーであることを、可能な限り、取り上げていただくことを希望します。

提言 4:福島第一原子力発電所事故に関する記述について

学習指導要領解説の社会編「第4学年の内容」では、「先の東日本大震災において原子力発電所で大きな事故が発生したことに伴って生じ、現在なお直面している多くの困難を踏まえ、当該地域やその住民、一時避難者に十分配慮して指導することが必要である。」との記述があります。調査した小学校社会4年生の3件の教科書では、1社は上記の記述にほぼ沿って記載されていました。他社においても、上記の学習指導要領解説の趣旨に沿って、福島第一原子力発電所事故の発生によって直面している困難、地域住民や一時避難者に配慮し、事故後の復興状況など最新の知見を含めて教科書で取り上げていただくことを希望します。

提言 5:使用済み燃料の処理・処分について

第 7 次エネルギー基本計画では、原子力発電所から発生する使用済み燃料の処理処分は 基本計画を実施していく上での最重要課題の一つとされています。一方、学習指導要領解説 の社会編では、「廃棄物を処理する事業は、衛生的な処理や資源の有効利用ができるよう進 められていること・・」,「処理の仕組みや再利用,県内外の人々の協力などに着目して,廃棄物の処理のための事業の様子を捉え,その事業が果たす役割を考え,表現すること」,「電気を取り上げる場合には,電力を大量に消費する大都市圏に住む人々の生活は,消費地から離れた県などにある発電所から電力の供給を受けることで成り立っていることに触れるようにする。・・」との記述があります。この記載の趣旨は必ずしも使用済み燃料の処理・処分を念頭に置いたものではないと考えられますが,多くの部分で該当しますので,可能な限り,教科書で取り上げていただくことを希望します。なお,原子力発電所から発生する使用済み燃料は再処理して再利用し,残りの高レベル放射性廃棄物は地下 300 メートル以深の地中に処分する計画で,現在,3つの処分候補地で調査が進められています。

3. 提言内容の解説

提言1:わが国の電源構成における原子力発電の位置づけについて

今回調査した教科書では、6年生の理科や4年生の社会の教科書において様々な発電方法が紹介されていますが、原子力発電について全く触れられていない教科書がありました。ここでは、わが国の電源構成における原子力発電の位置づけについて紹介します。

図 2-1 に電源別発受電電力量の推移を示します。原子力発電による発電量は、福島第一原子力発電所事故前の 2010 年には電源構成の中で約 25%を占めていましたが、事故後に一旦すべての原子力発電所を停止して、安全向上対策を実施することとしたため大きくその割合を減らしました。その後は安全向上対策が確認され地元了解が得られた原子力発電所から順に再稼働し、現在(2023年)では全体の約 9%を占め、火力(約 69%)、太陽光(約 10%)に次いで第 3 位の主要な電源となっています。

第7次エネルギー基本計画(*)においては、従来記載されていた「可能な限り原発依存度を低減する」という文言が削除され、「脱炭素電源として再生可能エネルギーと原子力を最大限活用する」と明記されました。2040年度の電源構成の目標では、原子力発電の割合は約20%とされています。

このように、原子力発電は現在も主要な電源であり、これから最大限活用される電源として位置づけられています。今後は、原子力発電も発電方法の一つとして取り上げていただくことを希望します。

*第7次エネルギー基本計画

エネルギー基本計画はエネルギー政策基本法第 12 条に基づく政府の基本計画であり、エネルギーの安定供給、経済成長、環境適合(脱炭素)の同時実現を目的とした、日本の中長期的なエネルギー政策の方向性を定める国家戦略です。これはエネルギー政策基本法に基

づき、おおむね 3 年ごとに見直されるもので、第 7 次エネルギー基本計画が 2025 年 2 月 18 日に閣議決定されました。

この第7次エネルギー基本計画の [V. 2040 年に向けての政策の方向性] の中で、エネルギー政策の基本的考え方として「・・・化石エネルギーへの過度な依存からの脱却を目指し、需要サイドにおける徹底した省エネルギー、製造業の燃料転換などを進めるとともに、供給サイドにおいては、再生可能エネルギー、原子力などエネルギー安全保障に寄与し、脱炭素効果の高い電源を最大限活用することが必要不可欠である。(V章. 2040年に向けた政策の方向性1. 総則(1)エネルギー政策の基本的考え方)」としています。

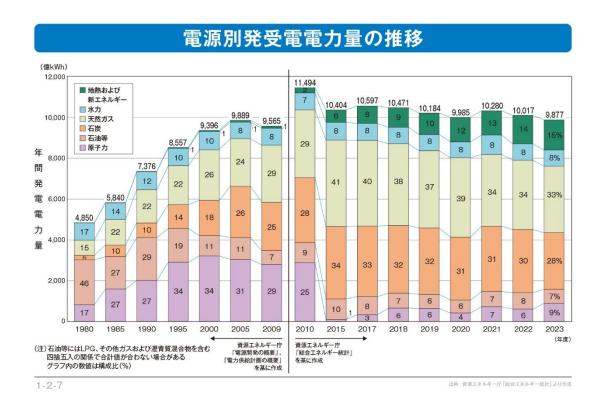


図 2-1 電源別発受電電力量の推移 (出典 エネ百科 https://www.ene100.jp/zumen/1-2-7)

提言 2: 脱炭素電源としての原子力発電について

今回調査した教科書では、多くの教科書で地球温暖化問題が取り上げられていますが、化石燃料に頼らず、二酸化炭素 (CO_2) を出さない発電方法として太陽光発電や風力発電など、再生可能エネルギーのみが紹介されており、原子力発電を紹介する教科書はありませんでした。

図 2-2 に各種電源別のライフサイクル CO_2 排出量を示します。原子力発電は、ウランやプルトニウムの核分裂反応によって発生するエネルギーを利用するため、発電の過程で CO_2 を発生しません。そのため、ライフサイクル CO_2 排出量は太陽光発電や風力発電などとほぼ同じです。

原子力発電は、昼夜・天候に関わらず安定して電力を供給できること、エネルギー密度が高く少量の燃料から大量のエネルギーを生み出せること、准国産エネルギーであること(次項参照)など、化石燃料や再生可能エネルギーと比較して優れた特長を持っています。そのため第7次エネルギー基本計画では、原子力発電を脱炭素電源として最大限活用することを明記しています。さらに、海外においても、気候目標達成には原子力は不可欠であるとして、日本を含む31か国が2050年までに世界の原子力発電の設備容量を3倍にすることを宣言しています(原子力3倍宣言)。そこで、脱炭素電源としての原子力発電を取り上げていただくことを希望します。

各種電源別のライフサイクルCO2排出量

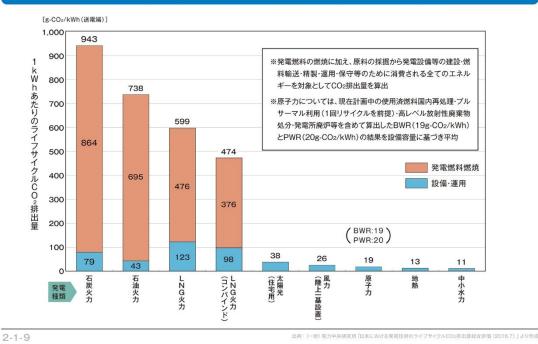


図 2-2 各種電源別のライフサイクル CO₂排出量 (出典 エネ百科 https://www.ene100.jp/zumen/2-1-9)

原子力・エネルギー図面集

提言3:準国産エネルギーとしての原子力について

準国産エネルギーとは,完全な国産ではないものの,輸入リスクが低く,安定供給が可能

であるために「ほぼ国産」とみなされ、エネルギー安全保障に寄与するエネルギーのことを 言います。

原子力は、燃料投入量に対するエネルギー出力が圧倒的に大きく、数年にわたって国内保 有燃料だけでエネルギー生産が維持でき、また、優れた安定供給性を有しており、エネルギー安全保障を確保する重要な手段の一つとなっています (1)。

原子力の燃料であるウランは日本国内ではほとんど産出されませんが下記の特徴により 準国産エネルギーとされています。

(1)燃料の必要量が極めて少ない(図2-3)

原子力発電に使用されるウランは、石油や石炭等の化石燃料と比べると、発電に必要な燃料の量が大きく異なります。例えば、出力 100万kW の発電所を1年間運転するために必要な濃縮ウラン量は、僅か21tです。火力発電に比べて、原子力発電に必要な燃料量は非常に少ないです。

(2) 輸送・備蓄が容易

少量で済むため、長期備蓄が可能*で、輸送の手間も少なく済みます。これにより、供給途 絶のリスクが大幅に低減されます。また、供給途絶に備える備蓄の面でも必要な貯蔵容量が 少なくなります。

*ウランの場合国内保有量だけでエネルギー生産が維持できる期間は数年、これに対して 天然ガスは約 $3\sim5$ 週間、石炭は約 $4\sim6$ 週間、石油は約200日)である(1)。

(3) 政情安定な供給国

ウランの主な供給国(カナダ、オーストラリアなど)は政情が安定しており、エネルギー 安全保障の観点からも信頼性が高いとされています。

(4) 燃料価格変動の発電コストへの影響が少ない

化石燃料の場合,燃料価格は産出国の政治情勢や国際的な需給バランス,為替レートの変動の影響も受けます。これに対し,原子力の発電コストは火力発電と比較して燃料費の割合が小さく,燃料価格変動の影響を受けにくいという特性があります。

(5) 核燃料のリサイクルが可能

一度輸入したウランは原子炉で使用された後,使用済み燃料中の有効な成分を取り出す ことによって再利用できるため、長期的な利用が可能です。これも「準国産」とみなされる 理由の一つです。

このように、ウランを用いた原子力は、量的・地政学的・技術的な観点から見て、輸入依存度が低く、安定供給が可能な「準国産エネルギー」として位置づけられています。さらに、高速炉を活用すれば国内にある劣化ウラン等を再利用することによって天然ウランの輸入を限定的若しくは不要にできる可能性があります⁽²⁾。

原子力を国産エネルギーとした場合の各国のエネルギー自給率を図2-4 に示します。わが国は、他の主要国と比較してエネルギー自給率は低く、原子力発電所の再稼働が進められているものの、電源構成は石炭や液化天然ガス(LNG)等の化石燃料に大きく依存する構

造となっています。わが国と同様に、自国にエネルギー資源を持たない韓国やフランス等のエネルギー自給率は、原子力利用により飛躍的に高くなっています。例えばフランスのエネルギー自給率は49%ですが、原子力を除いた場合には13%です⁽¹⁾。

そこで, 化石燃料や再生可能エネルギーと比べて, 原子力が準国産エネルギーとしてエネルギー安全保障に寄与するエネルギーであることを, 可能な限り, 取り上げていただくことを希望します。

100万kWの発電所を1年間運転するために必要な燃料

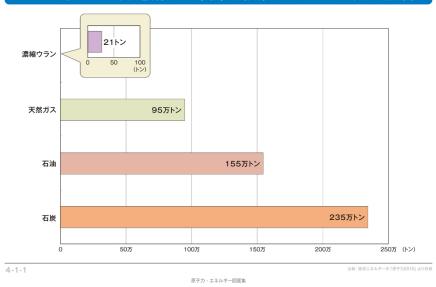


図 2-3 出力 100 万 kW の発電所を 1 年間運転するために必要な燃料 (出典 エネ百科 https://www.ene100.jp/zumen/4-1-1)

図 2-4 主要国のエネルギー自給率(2022 年) (出典 IEA, World Energy Balance(2022 年)を基に作成)

参考文献

- (1) 令和6年度版原子力白書
- (2) 原子力関係閣僚会議 戦略ロードマップ (2022 年改訂) P-6

提言4:福島第1原子力発電所事故に関する記述について

学習指導要領解説の社会編,「第4学年の内容」では,「(2)人々の健康や生活環境を支える事業について,学習の問題を追究・解決する活動を通して,次の事項を身に付けることができるよう指導する。」とあります。そこでは,「イ (ア)供給の仕組みや経路,県内外の人々の協力などに着目して,飲料水,電気,ガスの供給のための事業の様子を捉え,それらの事業が果たす役割を考え,表現すること。」とあります。その中には「県内外の人々の協力」に関して,「先の東日本大震災において原子力発電所で大きな事故が発生したことに伴って生じ,現在なお直面している多くの困難を踏まえ,当該地域やその住民,一時避難者に十分配慮して指導することが必要である。」との記述があります。

調査した小学校社会 4 年生の 3 件の教科書では、上記の記述にほぼ沿って、「原子力発電所の事故 2011(平成 23)年 3 月に発生した東日本大震災で、原子力発電所の一つが事故を起こしました。この事故は、広いはんいで人々のくらしに大きなえいきょうをおよぼしています。また、この事故をきっかけに、国内の原子力発電所のすべてが検査のため運転を休止しました。その後、一部の原子力発電所では運転が再開されています。(2023 年 6 月現在)」と記載されているのは教育出版の教科書だけであり、他の 2 社の教科書では福島第 1 原子力発電所事故には触れていません。上記、学習指導要領解説の趣旨に沿って、福島第 1 原子力発電所事故について、事故発生の経緯、直面する困難、地域住民や一時避難者への配慮等に関して教科書で取り上げていただくことを希望します。

同事故に関する記述については、調査結果から明らかになった事故の原因や背景に留意いただくよう要望します。また、引用・裏付資料の選択に当たっては、以下の調査資料等を参照されることを要望します。

- a. 国会事故調査委員会による事故調査報告書(2012 年) https://warp.da.ndl.go.jp/info:ndljp/pid/3856371/naiic.go.jp/
- b. 日本政府による事故調査委員会による事故調査報告書(2012 年 7 月) https://www.kantei.go.jp/jp/topics/2012/pdf/jikocho/honbun.pdf
- c. 福島第一原子力発電所事故その全貌と明日に向けた提言:学会事故調最終報告書(日本原子力学会, 丸善出版, 2014年3月発行)
- d. 国際原子力機関(IAEA)「福島第一発電所事故事務局長報告(邦訳)」(2015 年 8 月)

https://www-

pub.iaea.org/mtcd/publications/pdf/supplementarymaterials/p1710/languages/japa nese.pdf

事故後の健康への影響や直面する困難,地域住民や一時避難者,復興状況等については, 公的機関・国際機関が報告する最新の科学的知見に基づき,正確な記述をしていただくよう 要望します。

(参考)

- a. 2011年東日本大震災後の福島第一原子力発電所における事故による放射線被ばくのレベルと影響: UNSCEAR2013年報告書刊行後に発表された情報の影響
 https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2020_21_Report_Vol.II_JAPANESE.pdf
- b. 福島県「県民健康調査」 https://fukushima-mimamori.jp/outline/
- c. 日本学術会議報告 子どもの放射線被ばくの影響と今後の課題 現在の科学的知見 を福島で生かすために
 - https://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-23-h170901.pdf
- d. 福島県避難地域復興課 HP https://www.pref.fukushima.lg.jp/sec/11050a/

提言5:使用済み燃料の処理・処分について

第 7 次エネルギー基本計画では、原子力については、脱炭素の優れた安定供給性を有するベースロード電源として、必要な規模を持続的に活用していくことが示されました。そのために、立地地域との共生、国民各層とのコミュニケーションの深化・充実、バックエンドプロセスの加速化、再稼働の加速に官民挙げて取り組む等が方針として示されました。使用済み燃料の処理・処分は基本計画を実施していく上での最重要課題の一つです。

原子力発電所から出る使用済み燃料は六ケ所再処理工場で再処理され、有用な成分の分離がなされた後、分離した高レベル放射性廃棄物はガラス固化体にされ、最終的に地下300メートル以深の最終処分場に埋設されることになっています。最終処分に当たっては、技術的安全評価と最終処分地の選定が課題になります。前者については1975年以来、半世紀にわたって続けられており、現在は日本原子力研究開発機構(JAEA)で技術開発が進められています。後者については2000年に最終処分法が定められ、処分実施主体として原子力発電環境整備機構(NUMO)が発足、地方自治体(市町村)からの応募を受けて、文献調査→概要調査→精密調査の順で調査が進められることになりました。この期間は20年程度を

見込んでいます。現在、3町村(北海道2,九州1)で調査が行われています。

第7次エネルギー基本計画では、「最終処分の実現に向け、国が前面に立ち取り組む。その際、最終処分事業の実現が社会全体の利益であるとの認識に基づき、その実現に貢献する地域に対し、敬意や感謝の念を持つとともに、社会として適切に利益を還元していく必要があるとの認識が、広く国民に共有されることが重要である。」としています。

このことからも、「原子力発電からは廃棄物が出る」「その廃棄物は最終的に地層処分する」ということを、小学生の時から学習する機会があることは重要と考えられます。調査した小学校社会 4 年生の 3 点の教科書のうち 2 点は「はいき物の取りあつかいがむずかしい」と書かれていますが最終処分については触れていません。

学習指導要領解説の社会編 53 ページ,上から 14 行目から,「(イ) 廃棄物を処理する事業は,衛生的な処理や資源の有効利用ができるよう進められていることや,生活環境の維持と向上に役立っていることを理解すること。」と記述されています。また同じく 22 行目から「(イ) 処理の仕組みや再利用,県内外の人々の協力などに着目して,廃棄物の処理のための事業の様子を捉え,その事業が果たす役割を考え,表現すること。」と記述されています。後者の「県内外の人々の協力に着目する」ことの意味の例として,「電気を取り上げる場合には,電力を大量に消費する大都市圏に住む人々の生活は,消費地から離れた県などにある発電所から電力の供給を受けることで成り立っていることに触れるようにする。・・・」との説明があります。

最終処分地の問題を小学校の児童の時から学習することにより、より多くの国民が関心 を寄せることが期待できます。

上記,学習指導要領解説の主旨は必ずしも使用済み燃料の処理処分を念頭に置いたものではないと考えられますが,多くの部分で該当しますので,可能な限り,教科書で取り上げていただくことを希望します。

第3章 学習指導要領等の調査

小学校教科書の「エネルギー・原子力」に関する記述調査とあわせて,今回はこれら教科 書の依拠する学習指導要領やその解説の内容についても調査しました。

最新の小学校学習指導要領は、2017 (平成 29) 年 3 月,解説は 2017 (平成 29) 年 7 月 に告示されました。今回は、小学校学習指導要領、エネルギー・原子力に関連が強いと考えられる解説(【総則編】、【社会編】、【理科編】) について調査を実施しました。

1. キーワード設定

学習指導要領等から、エネルギー・原子力関連記述を抜粋するにあたり、以下のキーワードを設定しました。各キーワードから検索した文章を抜粋し、日本原子力学会がコメントすべき文脈で使われている箇所だけを本報告書に掲載することにしました。

表 3-1 設定したキーワード

大項目	キーワード	検索・関連する用語の例
原子力	原子力	
	原子炉	
	核	核分裂,原子核,核燃料,核廃棄物
	ウラン	
放射線	放射	放射線,放射性
	レントゲン	
	X	X線
	被ばく	
	がん	
エネルギー	発電	原子力発電,原子力発電所事故
・環境	エネルギー資源	
	エネルギー効率	
	省エネ	省エネルギー
	温暖化	地球温暖化
	脱炭素	
安全性	諸課題	
	復興	
	福島	福島第一原子力発電所
	JCO	
	もんじゅ	
	チェルノービリ	
	スリーマイル	

2. 学習指導要領等からの抜粋 (概要)

1) 小学校学習指導要領(平成29年3月告示)と解説(平成29年7月告示)

小学校学習指導要領の本文の内容について、設定したキーワードをもとに調査した結果、 日本原子力学会がコメントすべき文脈で使われている箇所を見つけることはできませんで した。

そのため、エネルギー・原子力に関連が強いと考えられる解説(【総則編】、【社会編】、【理 科編】) について調査しました。

表 3-2 エネルギー・原子力関連が該当すると考えられる小学校学習指導要領解説(【総則編】、【社会編】、【理科編】)の概要

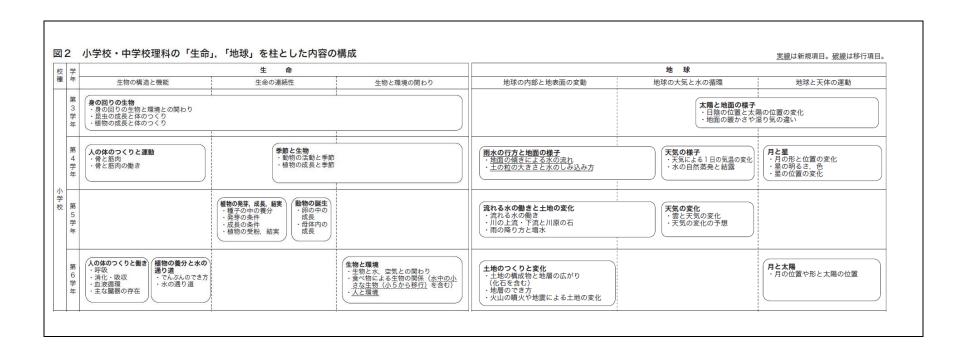
学年	総則	社会 理科
1		
2		
3	国語科 特別な教科 知識及び技能 道徳	
4	情報と情報の 公正,公平, 関係 社会主義	人々の健康や生活 環境を支える事業
5		
6		電気の利用

2)【総則編】小学校学習指導要領解説(平成 29 年 7 月告示)「付録 6 放射線に関する教育(現代的な諸課題に関する教科等横断的な教育内容)」(https://www.mext.go.jp/content/20230308-mxt_kyoiku02-100002607_001.pdf)

(232~233 ページ)

放射線に関する教育(現代的な諸課題に関する 教	枚科等横断的な教育内容)		[小学校] [中学校
本資料は、小・中学校学習指導要領における「放射線に関する教育」について、学校におかれては、それぞれの教育目標や児童/生徒の実態を踏まえた上で、2		ものを抜粋し、通覧性を重視して掲載したものです。	
第2の2 (2) 各学校においては、児童/生徒や学校、地域の実態及び児童/生徒の う、各学校の特色を生かした教育課程の編成を図るものとする。	の発達の段階を考慮し、豊かな人生の実現や災害等を乗り越えて	次代の社会を形成することに向けた現代的な諸課題に対応して求められる	資質・能力を、教科等横断的な視点で育成していくことができる。
総則は小学校・中学校の共通部分を抜粋。 国語科	社会	科	特別の教科 道徳
(第1学年及び第2学年) (知識及び技能) (2) 話や文章に含まれている情報の扱い方に関する次の事項を身に付けることができるよう指導する。 ア 共通、相連、事柄の関序など情報と情報との関係について理解すること。	(4学年) 人々の健康や生活環境を支える事業について、学習の問題を追究・ ア 次のような知識及び技能を身に付けること。 (ア) 飲料水、電気、ガスを供給する事業は、安全で安定的に供給 役立っていることを理解すること。 イ 次のような思考力、判断力、表現力等を身に付けること。 (ア) 供給の仕組みや経路、県内外の人々の協力などに着目して、 たす役割を考え、表現すること。		C 主として集団や社会との関わりに関すること [公正、公平、社会正義] (第1 学年及び第2学年) 自分の好き嫌いにとらわれないで接すること。 (第3 学年及び第4学年) 誰に対しても分け隔でをせず、公正、公平な態度で接すること。 (第5 学年及び第6学年) 誰に対しても発別をすることや偏見をもつことなく、公正、公・な態度で接し、正義の実現に努めること。

3)【社会編】小学校学習指導要領解説(平成 29 年 7 月告示)(https://www.mext.go.jp/content/20230308-mxt_kyoiku02-100002607_003.pdf)


(150~151 ページ)

小・中学校社会科における内容の枠組みと対象 枠組み 地理的環境と人々の生活 現代社会 の仕組みや働きと人々の生活 歴史と人々の生活 対象 地 域 日 本 世界 経済・産業 政 治 国際関係 地 域 日 本 世界 イア 「市役所などの公共施設 内容の取扱い(4)ウ「国際化」 の場所と働き」 - (4) 市の様子の移り変わり (1) 身近な地域や市の様子 (3) 地域の安全を守る働き (2) 地域に見られる生産や販 イイ)「外国との関わり」 イ(ア)「仕事の種類や産地の分布」 売の仕事 内容の取扱い(1) イ (1) 県の様子 支える事業 (2) 人々の健康や生活環境を 「公衆衛生の向上」 ア(ア)「47 都道府県の名称と位置」 (3) 自然災害から人々を イ (ア)「過去に発生した 内容の取扱い(3)イ 4 年 守る活動 地域の自然災害」 「開発、産業などの事例(選択)」 (4) 県内の伝統や文 化、先人の働き 内容の取扱い (4) ア 内容の取扱い (4)ア「地場産 (5) 県内の特色ある地域の様子 「国際交流に取り組む地域」 業。伝統的な文化(選択)」 ア(イ)「自然環境に適応して 小学校 (1) 我が国の国土の様子 イ(ア)「世界の大陸と主な海洋、 生活していること」 と国民生活 イ(ア)「輸入など外国との関 世界の主な国々」 イタ「生産物の種類や分布」 (2) 我が国の農業や水産業 イク「生産量の変化」 における食料生産 イ(イ) 「技術の向上」 イ(ウ)「貿易や運輸」 イ(ア)「工業の盛んな地域の分布」 ● イ(ア)「工業製品の改良」 (3) 我が国の工業生産 年 イイ()「情報を生かして (4) 我が国の情報と産業との 発展する産業」 関わり (5) 我が国の国土の自然環境 (5) 我が国の と国民生活との関連 国土の自然環境 国民生活との関連 (1) 我が国の政治の働き (2) 我が国の歴史上の 主な事象 ア(切「国際社会での重要な役 6 年 イ(イ)「我が国の国際協力」 イ(ア)「外国の人々の生活の様子」 (3) グローバル化する 内容の取扱い (2) オ 世界と日本の役割 「当時の世界との関わり」

4)【理科編】小学校学習指導要領解説 (平成 29 年 7 月告示) (https://www.mext.go.jp/content/20211020-mxt_kyoiku02-100002607_05.pdf)

(22~25ページ)

- 3. 学習指導要領等からの抜粋(詳細)
- 1)【総則編】小学校学習指導要領解説(平成29年7月告示)「付録6 放射線に関する教育(現代的な諸課題に関する教科等横断的な教育内容)」

 $(232\sim233 ページ)$

タイトル

放射線に関する教育(現代的な諸課題に関する教科等横断的な教育内容)

冒頭

本資料は、小・中学校学習指導要領における「<u>放射線</u>に関する教育」について育成を目指す資質・能力に関連する各教科等の内容のうち、主要なものを抜粋し、通覧性を重視して掲載したものです。

各学校におかれては、それぞれの教育目標や児童/生徒の実態を踏まえた上で、本資料をカリキュラム・マネジメントの参考としてご活用ください。

総則

第2の2

- (2) 各学校においては、児童/生徒や学校、地域の実態及び児童/生徒の発達の段階を考慮し、豊かな人生の実現や災害等を乗り越えて次代の社会を形成することに向けた現代的な諸課題に対応して求められる資質・能力を、教科等横断的な視点で育成していくことができるよう、各学校の特色を生かした教育課程の編成を図るものとする。
- 2)【社会編】小学校学習指導要領解説(平成29年7月告示)

(55~56ページ)

- 第3章 各学年の目標及び内容
- 第2節 第4学年の目標及び内容
- 2 第4学年の内容
 - (2) 人々の健康や生活環境を支える事業について、学習の問題を追究・解決する活動を通して、次の事項を身に付けることができるよう指導する。
 - ア 次のような知識及び技能を身に付けること。
 - (ア) 飲料水,電気,ガスを供給する事業は,安全で安定的に供給できるよう進められていることや,地域の人々の健康な生活の維持と向上に役立っていることを理解すること。

- (イ) 廃棄物を処理する事業は、衛生的な処理や資源の有効利用ができるよう進められていることや、生活環境の維持と向上に役立っていることを理解すること。
- (ウ) 見学・調査したり地図などの資料で調べたりして、まとめること。
- イ 次のような思考力、判断力、表現力等を身に付けること。
 - (ア) 供給の仕組みや経路,県内外の人々の協力などに着目して,飲料水,電気,ガスの供給のための事業の様子を捉え,それらの事業が果たす役割を考え,表現すること。
 - (イ) 処理の仕組みや再利用、県内外の人々の協力などに着目して、廃棄物の処理 のための事業の様子を捉え、その事業が果たす役割を考え、表現すること。

イは、「思考力、判断力、表現力等」に関わる事項である。

イの(ア)の供給の仕組みや経路, 県内外の人々の協力などに着目して, 飲料水, 電気, ガスの供給のための事業の様子を捉え, それらの事業が果たす役割を考え, 表現することとは, 社会的事象の見方・考え方を働かせ, 飲料水, 電気, ガスの供給のための事業の様子について, 例えば, どのような仕組みで作られているか, どのような経路を通って送られて来るか, どのような関係機関や人々の協力の基に成り立っているかなどの問いを設けて調べたり, それらの事業と人々の生活を関連付けて考えたりして, 調べたことや考えたことを表現することである。

供給の仕組みや経路に着目するとは、飲料水、電気、ガスの確保に向けた取組や、飲料 水、電気、ガスが自分たちの地域に届けられる仕組みや経路について調べることである。 飲料水の供給については、水源林の確保、ダムや貯水池、浄水場での高度な技術を活用し た浄水処理や給水の仕組みなどを調べることである。電気の供給については、火力、水 力,原子力などの発電所,燃料や水資源の確保,発電所から消費地までの送電,必要な量 の電気の確保などの様子を調べることである。その際、火力発電所や原子力発電所につい ては、環境や安全に配慮して発電していることについても調べる必要がある。ガスの供給 については, 原料の液化天然ガスなどを外国から輸入していること, 液化天然ガスの製造 基地、都市ガスとしての供給、安全の確保などの様子を調べることである。県内外の人々 **の協力**に着目するとは、飲料水、電気、ガスの供給に関係する施設や事業所などの建設に 関わる県内外の人々,節水(節電や省エネ)などに関わる県内の人々の連携や協力につい て調べることである。 なお、 電気を取り上げる場合には、 電力を大量に消費する大都市圏 に住む人々の生活は、消費地から離れた県などにある発電所から電力の供給を受けるこ とで成り立っていることに触れるようにする。その際, 先の東日本大震災において原子力 発電所で大きな事故が発生したことに伴って生じ、現在なお直面している多くの困難を 踏まえ,当該地域やその住民,一時避難者に十分配慮して指導することが必要である。

このようにして調べたことを手掛かりに、**飲料水**, **電気**, ガスの供給のための事業の様子を捉えることができるようにする。

それらの事業が果たす役割を考え、表現することとは、例えば、飲料水、電気、ガスの供給のための事業に見られる仕組みや人々の協力関係と地域の人々の健康や生活環境を関

連付けて、それらの事業が果たす役割を考え、文章で記述したり、白地図や図表などにまとめたことを基に話し合ったりすることである。

(57~58ページ)

- (1) 内容の(2) については、次のとおり取り扱うものとする。
 - ア アの(ア)及び(イ)については、現在に至るまでに仕組みが計画的に改善され 公衆衛生が向上してきたことに触れること。
 - イ アの(ア)及びイの(ア)については、飲料水、電気、ガスの中から選択して取り上げること。
 - ウ アの(イ)及びイの(イ)については、ごみ、下水のいずれかを選択して取り上 げること。
 - エ イの(ア)については、節水や節電など自分たちにできることを考えたり選択・ 判断したりできるよう配慮すること。
 - オ イの(イ)については、社会生活を営む上で大切な法やきまりについて扱うとと もに、ごみの減量や水を汚さない工夫など、自分たちにできることを考えたり選択・ 判断したりできるよう配慮すること。

内容の取扱いの(1)のエは、内容の(2)のイのアについて指導する際の配慮事項について示したものである。

ここでは、学習したことを基に、水、電気、ガスを大切な資源として捉え、節水や節電、省エネなどに向けて、自分たちが協力できることなどを考えたり選択・判断したりするなど、資源の有効利用に関心を高めるよう配慮することが大切である。その際、市などが行っている節水や節電の呼びかけ、家庭や学校、事業所などでの節水や節電の取組、太陽エネルギー利用の取組などを取り上げ、飲料水や電気、ガスなどの使い方を見直し有効に利用することが大切であることに気付くようにすることが大切である。

$(144 \sim 145 \sim -))$

- 第4章 指導計画の作成と内容の取扱い
- 2 内容の取扱いについての配慮事項
- (3) 博物館や資料館などの施設の活用を図るとともに、身近な地域及び国土の遺跡や文化財などについての調査活動を取り入れるようにすること。また、内容に関わる専門家や関係者、関係の諸機関との連携を図るようにすること。

これは、各学年の内容を取り扱う際に、地域にある教育的な施設の活用を図るとともに、身近な地域及び国土の遺跡や文化財などの観察や調査などの活動を取り入れるように留意することを示したものである。

近年,国や地方公共団体,企業などによって,博物館やその他の施設の整備が進められている。これらの諸施設を積極的に活用して,社会科の見学や調査活動を行うことは,児童の意欲や学習効果を高める上で極めて重要なことである。社会科の学習に活用できる

博物館には、歴史博物館や郷土資料館のほかに、例えば、魚や自動車などに関する博物館、水道、電気、ガス、<u>原子力など資源・エネルギー</u>に関する博物館、農業や漁業、林業、伝統的な工業などの地場産業に関する地域産業振興センターなど、多様なものがある。

地域にあるこれらの施設を積極的に活用することによって、児童の知的好奇心を高め、 学習への動機付けや学習の深化を図ることができる。また、諸感覚を通して実物や本物に 触れる感動を味わうことができる。学校での積極的な活用を通して、これらの施設を自ら 進んで利用できるようになる。そのことは生涯に渡って活用する態度や能力の基礎とな るものである。

また、身近な地域や国土には、様々な遺跡や文化財が保存、管理されており、それらを観察したり調査したりする活動の場を、学習のねらいを考慮して、指導計画に位置付けることも考えられる。例えば、第3学年での市や人々の生活の移り変わりに関する学習や第4学年での県内の特色ある地域の人々の生活に関する学習、第6学年での我が国の歴史学習などでは、身近な地域や国土に残されている様々な遺跡や文化財、歴史博物館などを直接訪ねて観察・見学したり調査したりする活動を組み入れることができる。このことにより、児童は一層具体的に学習できるようになり、学習のねらいを効果的に実現するとともに、歴史に対する興味・関心を高めることができる。

指導計画の作成に当たっては、事前に施設、遺跡や文化財などの実情を把握するとともに、関係の機関や施設などとの連携を綿密にとることが大切である。その際、施設の学芸員や指導員などから話を聞いたり協力して教材研究を行ったりして、指導計画を作成する手掛かりを得ることも一つの工夫である。また、特別活動の遠足・集団宿泊的行事や総合的な学習の時間における伝統や文化に関する学習活動などとの関連を指導計画に示すことも考えられる。

このような学習を通して、博物館や資料館、地域や国土に残されている遺跡や文化財などの役割や活用の仕方について正しく理解させ、それらに関わっている人々の働きやそれらが大切に保存、管理されていることの意味についても気付くようにすることが大切である。

また、学習内容や教材について、地域の専門家や関係者、関係諸機関等と円滑な連携・協働を図ることも大切である。例えば、地域の生産や販売の仕事に関わる人、地域の歴史を研究している人、地域の安全や健康な生活、良好な生活環境を守るための諸活動に関わる人、伝統的な文化や自然環境など地域の資源を保護・活用している人、食料生産や工業生産などの産業に従事する人、政治の働きに関わる関係諸機関の人などの協力を得て、話を聞いたり、活動の様子を見学したり、社会に見られる課題の解決に向けて意見交換をしたりすることなどが考えられる。その際、学校支援地域本部などの活動と連携を図ることも有効であると考えられる。

3)【理科編】小学校学習指導要領解説(平成29年7月告示)

(82~83ページ)

第4節 第6学年の目標及び内容

- 2 第6学年の内容
- A 物質・エネルギー
- (4) 電気の利用

発電や蓄電,電気の変換について,電気の量や働きに着目して,それらを多面的に調べる活動を通して、次の事項を身に付けることができるよう指導する。

- ア 次のことを理解するとともに、観察、実験などに関する技能を身に付けること。
 - (ア) 電気は、つくりだしたり蓄えたりすることができること。
 - (イ) 電気は、光、音、熱、運動などに変換することができること。
 - (ウ) 身の回りには、電気の性質や働きを利用した道具があること。
- イ 電気の性質や働きについて追究する中で、電気の量と働きとの関係、発電や蓄電、 電気の変換について、より妥当な考えをつくりだし、表現すること。

(内容の取扱い)

(2) 内容の「A物質・エネルギー」の(4)のアの(ア)については、電気をつくりだす道具として、手回し発電機、光電池などを扱うものとする。

本内容は、第5学年「A (3) 電流がつくる磁力」の学習を踏まえて、「エネルギー」についての基本的な概念等を柱とした内容のうちの「エネルギーの変換と保存」、「エネルギー資源の有効利用」に関わるものであり、中学校第1分野「(3) r(r) 電流」、「(7) 科学技術と人間」の学習につながるものである。

ここでは、児童が、電気の量や働きに着目して、それらを多面的に調べる活動を通して、発電や蓄電、電気の変換についての理解を図り、観察、実験などに関する技能を身に付けるとともに、主により妥当な考えをつくりだす力や主体的に問題解決しようとする態度を育成することがねらいである。

- (ア) 身の回りにある発電、蓄電に関する道具に着目して、手回し発電機や光電池などを使って発電したり、蓄電器に電気を蓄えたりできることを多面的に調べる。これらの活動を通して、発電や蓄電について、電気の量と働きとの関係について、より妥当な考えをつくりだし、表現するとともに、電気は、つくりだしたり蓄えたりすることができることを捉えるようにする。
- (4) 豆電球や発光ダイオードを点灯させたり、電子オルゴールを鳴らしたり、電熱線を発熱させたり、モーターを回転させたりしたときの電気の働きに着目して、それらを多面的に調べる。これらの活動を通して、電気の変換について、より妥当な考えをつくりだし、表現するとともに、電気は、光、音、熱、運動などに変換することができることを捉えるようにする。
- (ウ) 身の回りにある、電気を利用している道具の働きに着目して、電気の利用の仕方を多面的に調べる。これらの活動を通して、発電や蓄電、電気の変換について、より妥当な考えをつくりだし、表現するとともに、発電したり、蓄電したり、変換さ

せたりしながら利用していることを捉えるようにする。その際、身の回りには、電気の働きを目的に合わせて制御したり、電気を効率よく利用したりしている物があることを捉えるようにする。

ここで扱う対象としては、電気を蓄える物として、例えば、コンデンサーなどの蓄電器が考えられる。電気をつくりだしたり、蓄電器などに電気を蓄えたりすることができることについては、豆電球や発光ダイオードの点灯やモーターの回転などによって捉えるようにする。

ここでの指導に当たっては、児童が手回し発電機や光電池などを使って自分で電気を つくりだし、その電気を蓄えたり、変換したりすることにより、エネルギーが蓄えられる ことや変換されることを体験的に捉えるようにする。

日常生活との関連としては、<u>エネルギー</u>資源の有効利用という観点から、電気の効率的な利用について捉えるようにする。このことについて、例えば、蓄電した電気を使って、発光ダイオードと豆電球の点灯時間を比較することが考えられる。また、身の回りには、温度センサーなどを使って、エネルギーを効率よく利用している道具があることに気付き、実際に目的に合わせてセンサーを使い、モーターの動きや発光ダイオードの点灯を制御するなどといったプログラミングを体験することを通して、その仕組みを体験的に学習するといったことが考えられる。

第4章 教科書の記述とコメント・修正文の例

【理科607 新編 新しい理科6】 東京図書

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		私たちが、くらしのなかで利用している電気の多くは、発電所でつくられてい	発電所の例として、火力発電所、水力発電所、風力発電所、太陽光発電所の写真
		ます。電気をつくることを,発電といいます。	が掲載されていますが、原子力発電所の写真がありません。最近のわが国の発電
		写真 火力発電所 [神奈川県川崎市]	割合では,原子力発電は火力,太陽光,水力に次いで4番目を占めています。ま
138	写真	写真 水力発電所 [京都府宇治市]	た,令和7年2月に策定された第7次エネルギー基本計画で2040年に向けての
		写真 風力発電所 [北海道稚内市]	政策の方向性として「再生可能エネルギー,原子力などエネルギー安全保障に寄
		写真 太陽光発電所 [兵庫県淡路市]	与し, 脱炭素効果の高い電源を最大限活用することが必要不可欠である。」とし
			ている点からも,今後は原子力発電所の写真も掲載することを提案します。
		「回す動きで電気をつくる」	火力発電を例として, タービンが回ることで, 発電機のじくがまわり, 電気が作
		私たちが使う電気の半分以上は、火力発電という方法でつくられています。	られるしくみについて、とても分かりやすく図解しています。同じように発電機
		火力発電では、石油や石炭、天然ガスなどの化石燃料を燃やして水を熱し、そ	のじくを回して発電するしくみを利用する発電として、水力発電、風力発電が紹
141		のときに発生する水蒸気の力で、タービンを回しています。タービンが回るこ	介されていますが,原子力発電も追加することを提案します。
141		とで、発電機のじくが回り、電気がつくられます。実験1で、手回し発電機のモ	
		ーターのじくを回して発電したのと、同じしくみなのです。	
		発電機のじくを回して、発電するしくみは水力発電や風力発電でも利用されてい	
		ます。いろいろな発電所の発電のしくみを調べてみましょう。	
		「かげとのたたかい~太陽光発電所の設計を行う白髪さんに聞きました~」	太陽光発電は夜間に発電できず、天候に左右される変動電源ですが、「年間を通
153		太陽光発電所では、光電池を並べたソーラーパネルに日光を当てて電気をつ	じて安定して発電できる太陽光発電所」との記述があります。太陽光発電のメリ
		くります。ソーラーパネルには、その一部にかげができると、全体の発電量が	ット、デメリットが正しく伝わるよう記述されることを希望します。

水力発電の写
時に二酸化炭
エネルギーに
とを提案しま
2040 年に向け
ギー安全保障
「欠である。」
2

	・電気を利用した自動車に変える	
	・自転車をもっと利用する	

【理科608 新版 たのしい理科6年】 大日本図書

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		「私たちに電気が届くまで」	発電所の例として、火力発電所、水力発電所、風力発電所、太陽光発電所の写真
		写真 火力発電所 愛知県名古屋市	が掲載されていますが,原子力発電所の写真がありません。最近のわが国の発電
		写真 水力発電所 群馬県みなかみ町	割合では,原子力発電は火力,太陽光,水力に次いで4番目を占めています。ま
172		写真 風力発電所 静岡県浜松市	た,令和7年2月に策定された第7次エネルギー基本計画でも2040年に向けて
		写真 太陽光発電所 大分県大分市	の政策の方向性として「再生可能エネルギー,原子力などエネルギー安全保障に
			寄与し,脱炭素効果の高い電源を最大限活用することが必要不可欠である。」と
			している点からも、今後は原子力発電所の写真も掲載することを提案します。
		「電気をためる技術」	再生可能エネルギーのうち、電力供給が不安定であるという風力発電や太陽光発
		地球の気温が少しずつ上がることを地球温暖化といい,環境に深刻なえいき	電の短所にも触れていることは、バランスの取れた記述として評価します。
		ようをあたえています。そのため,地球温暖化の原因と考えられている二酸化	
		炭素などの温室効果ガスを排出せずに発電できる、太陽光発電や風力発電が注	
		目されています。	
176		しかし、風力発電では風がふかないとき、太陽光発電では日光が当たらない	
		<u>ときは、発電できません。</u> そのため、発電した電気をためる技術がとても大切	
		です。	
		電気をコンデンサーよりも多くためることができるものにじゅう電池があり	
		ます。	
		じゅう電池は、けい帯電話や電気自動車など、身の回りのいろいろなところ	

	で使われています。	
	また、技術が進んだことで、ますます小さくなり、使える時間も長くなって	
	きました。これからも,電気をためる技術は進んでいくことでしよう。	
	「タービンを回して発電」	火力発電を例として、タービンが回ることで、発電機のじくがまわり、電気が作
	手回し発電機がハンドルを回すことで発電するように、火力発電所は、ター	られるしくみについて、とても分かりやすく図解しています。同じように発電機
	ビンを回すことで発電しています。 これは,水力発電所,風力発電所でも利用	のじくを回して発電するしくみを利用する発電として、水力発電、風力発電が紹
	<u>されています。</u>	介されていますが,原子力発電も追加することを提案します。
170	火力発電所で発電した電気は、日本の家庭や工場などで使われる電気の多く	
179	の割合をしめています。火力発電の利点は、必要に応じて発電する電気の量を	
	調節できることです。	
	しかし、地球温暖化の原因の1つと考えられている二酸化炭素を多く排出しま	
	す。そのため、最近では二酸化炭素の排出をおさえる対策として、燃料にアン	
	モニアを使うなどの技術の開発が進められています。	
	「カーボンニュートラルの実現へのとり組み」	カーボンニュートラルの実現を目指して開発されているいろいろな発電の方法
	地球温暖化により、海面の上しょうが起こるなど世界中で深刻な問題となっ	として、潮流発電、地熱発電、太陽光発電を写真入りで紹介し、持続的に利用で
	ています。この地球温暖化を食い止めるために,二酸化炭素などの温室効果ガ	きる資源を利用し,二酸化炭素を排出しない,「環境へのえいきょうを少なくす
	スと呼ばれる気体の、人の活動による排出量と、植林などによる吸収量を同じ	る発電の方法」としています。原子力発電も発電時に二酸化炭素が発生しない低
183	にするカーボンニュートラルの実現に向けて、世界各国でとり組んでいます。	炭素電源で、供給の安定したウラン燃料を利用する発電方法ですので、原子力発
100	日本では、2050年までにカーボンニュートラルの実現を目指しています。そ	電についても言及することを提案します。
	のとり組みの1つとして、いろいろな発電の方法が開発されています。例えば、	因みに、令和7年2月に策定された第7次エネルギー基本計画で2040年に向け
	海の潮の流れを利用した潮流発電や地下の熱を利用した地熱発電、日光を利用	ての政策の方向性として「再生可能エネルギー,原子力などエネルギー安全保障
	した太陽光発電などがあります。これらの発電の方法は、石油、石炭、天然ガ	に寄与し,脱炭素効果の高い電源を最大限活用することが必要不可欠である。」
	スなどの限りある資源を利用するのではなく,地下の熱など持続的に使うこと	としています。

	ができる資源を利用しています。また、発電するときに二酸化炭素を排出しま	
	せん。環境へのえいきょうを少なくする発電の方法として注目されています。	
	このように環境に配りょしながら、いろいろな人が新しい技術の開発に力を入	
	れています。私たちも、カーボンニュートラルの実現に向けて、自分にできる	
	ことからとり組んでみましょう。	
	「電気の使い方と地球の資源」	「電気を使えなかった時代と比べ、とても便利になりました」とし、その背景に
	私たちの生活は、電気を使えなかった時代と比べ、とても便利になりました。	は1年間に使う電気の量が 1965 年と比べて約 6 倍に増えていることをグラフを
	明かりや料理, 仕事, 遊びなど多くのことに電気を使うようになり, 日本で 1	用いて定量的に示しています。また、「このように、科学技術は、とても役に立っ
	年間に使う電気の量は、1965年と比べて約6倍に増えています。	ています。」と科学技術の意義を記述している点も高く評価します。
	私たちは、未来のために地球環境を守りながら限りある地球の資源を有効に	
191	利用していかなければなりません。	
	そのため、燃料を使わない太陽光発電と風力発電などの利用や、使う電気の	
	量が少ない発光ダイオードのディスプレーの利用が増えてきました。さまざま	
	なくふうの結果、使う電気の量が少しずつ減ってきています。	
	このように、科学技術は、とても役に立っています。私たちにもできること	
	を考えていきましょう。	

【理科609 みんなと学ぶ 小学校理科6年】学校図書

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		私たちが使う電気の多くは、発電所でつくられています。電気をつくることを	発電機のじくを回して発電する方法として、水力発電、風力発電、火力発電、原
180-		発電といいます。	子力発電が紹介されており、図・写真を使って発電の原理を分かりやすく説明し
181		水力発電所では高いところから低いところへ水が流れる力を利用して,風力発	ている点を高く評価します。
		電所では風の力を利用して,発電機のじくを回し,発電しています。	

また、火力発電所や原子力発電所では、水を熱したときにできる水蒸気の力を	
利用して、発電機のじくを回し、発電しています。	

【理科 610 未来をひらく 小学理科 6】教育出版

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		写真 水力発電所で使うための水をためるダム (富山県立山町)	発電所として,水力発電所,風力発電所,太陽光発電所が写真付きに紹介されて
		写真 風力発電所(北海道稚内市)	いますが,原子力発電所,火力発電所には触れられていません。最近のわが国の
173		写真 太陽光発電所 (大阪府堺市)	発電割合では火力発電が多くの割合を占めており、原子力発電は火力、太陽光、
173		「1 電気をつくる」	水力に次いで4番目を占めています。令和7年2月に策定された第7次エネルギ
		上の写真を見ながら,発電所では,どのようにして電気をつくっているかを考	一基本計画で「バランスの取れた電源構成を目指す」としている点からも、再生
		えましょう。	可能エネルギーだけでなく火力発電、原子力発電も紹介することを提案します。
		「さまざまな発電の方法」	「地熱のほかにも,水力,風力,太陽光などを使った発電は,化石燃料を燃やさ
		日本で利用される電気の大半をまかなう火力発電所では、天然ガスや石炭な	ないので、地球の気温を上げる効果があると考えられている二酸化炭素を出しま
		どの化石燃料を燃やした熱で水蒸気を発生させ、水蒸気の力で発電機を回転さ	せん。」とありますが,原子力発電も発電時に二酸化炭素を発生しない電源です。
		せて電気をつくっています。	次のように記述することを提案します。
		一方、地熱発電所では、化石燃料のかわりに地下のマグマの熱を利用して水	「地熱のほかにも,原子力,水力,風力,太陽光などを使った発電は,化石燃料
177		蒸気を発生させ,水蒸気の力で発電機を回転させて電気をつくっています。	を燃やさないので、地球の気温を上げる効果があると考えられている二酸化炭素
		地熱のほかにも、水力、風力、太陽光などを使った発電は、化石燃料を燃や	を出しません。」
		さないので、地球の気温を上げる効果があると考えられている二酸化炭素を出	因みに、令和7年2月に策定された第7次エネルギー基本計画で2040年に向け
		<u>しません。</u>	ての政策の方向性として「再生可能エネルギー,原子力などエネルギー安全保障
		写真 火力発電所 (愛知県知多市)	に寄与し,脱炭素効果の高い電源を最大限活用することが必要不可欠である。」
		写真 地熱発電所(大分県九重町)	としています。
208		「資源問題」	「化石燃料にたよらない再生可能エネルギー(風力,太陽光,地熱など)の開発が

私たちが毎日使う電気の多くは、石油や石炭などの化石燃料を燃やしてつく られています。また、自動車や飛行機なども、ガソリンなどの化石燃料を燃や│法です。次のような記述を提案します。 して動きます。しかし、こうした化石燃料は、燃やすと二酸化炭素が発生し、 使用するといつかはなくなってしまう資源です。そこで、<u>化石燃料にたよらな</u> 原子力発電の利用が現在進められています。」 い再生可能エネルギー(風力,太陽光,地熱など)の開発が現在進められてい ます。

現在進められています。」とありますが、原子力発電も化石燃料にたよらない方

「化石燃料にたよらない再生可能エネルギー(風力,太陽光,地熱など)の開発や

【理科 611 楽しい理科 6】信州教育出版

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		「発電機を回して電気をつくる発電所」	「発電機を回して電気をつくる発電所」として,火力発電所,原子力発電所,水
		写真 火力発電所 天然ガスや石炭などを燃やして水をふっとうさせて水蒸気	力発電所,地熱発電所,風力発電所が写真付きで紹介されています。原子力発電
		をつくり,水蒸気の力で発電機を回して電気をつくってている。	のしくみも分かりやすく解説している点を高く評価します。
		写真 原子力発電所 ウラン燃料を使って作られる熱で水をふっとうさせて水	
		蒸気をつくり、水蒸気の力で発電機を回して電気をつくっている。	
162	写真	写真 水力発電所 ダムにためた水を高い所から低い所に落として、水の力で	
		発電機を回して電気をつくっている。	
		写真 地熱発電所 地下の熱による水蒸気の力で発電機を回して電気をつくっ	
		ている。	
		写真 風力発電所 風を大きなプロペラで受け、発電機を回して電気をつくっ	
		ている。	
		「天然ガスや石炭を燃やさないで発電するくふう」	化石燃料にたよらない発電方法として,太陽光発電,地熱発電,風力発電が写真
179	写真	写真 太陽光発電 たくさんの光電池に太陽の光を当てて,電気をつくってい	で紹介されていますが,原子力発電も化石燃料にたよらず,発電時に二酸化炭素
		る。家の屋根に光電池を取りつけて、電気をつくっている。	を排出しない電源です。吹き出しで「ほかにもいろいろな方法で発電していると

	写真 地熱発電	地下の熱による水蒸気の力で発電機を回して電気をつくって	聞いたよ。調べてみたいね。」とあるので、ここで学習してくれることを期待しま
	いる。		す。
	写真 風力発電	自然の風の力を利用し、大きなプロペラの回転で発電機を回	
	して電気をつく。	っている。	

【理科 612 わくわく理科 6】啓林館

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		「発電所での発電のしくみ」	「風力発電,水力発電,火力発電,原子力発電,地熱発電のいずれも,発電機を
		風力発電,水力発電,火力発電,原子力発電,地熱発電のいずれも,発電機を	回すことによって電気を生み出しています。」として,火力発電のしくみの図を
		回すことによって電気を生み出しています。	示して発電のしくみを分かりやすく説明している点を高く評価します。
177		風力発電や水力発電は、風や水の力で風車や水車を回し、発電機を回していま	
177		す。火力発電は天然ガスや石炭などを燃やし,原子力発電は原子力を使って,	
		水蒸気をつくり、水蒸気の勢いでタービン(羽根車)を回し、発電機を回して	
		います。地熱発電も地中の高温の水蒸気を使って,発電しています。	
		図 火力発電のしくみ 水蒸気をタービンに当てることで、発電機が回る。	
		「理科の「見方・考え方」が役に立ったよ!」	太陽光発電に関して、「くもりの日はどのくらい発電でるのかな?」「夜は発電で
215	漫画	最近、ちひろさんのくらす町には、太陽光発電パネルがついた家が増えてきま	きないね。」「そもそも太陽光パネルをつくるにはどれくらい電気が必要なんだろ
	(支四	した。	う?」など、発電方法の長所だけでなく、短所にも目を向けており、バランスの
			取れた内容となっています。

【社会 405 新編 新しい社会 4】東京書籍

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
50		「原子力発電」	発電方法の一つとして,原子力発電所の写真を掲載した上で,丁寧に説明してい

		・ウラン燃料を使い,発生する熱で発電する。	る点を高く評価します。
		・ウランは輸入にたよっている。	火力発電は燃料を輸入に頼っていること,二酸化炭素を多く出すこと,水力発電
		・事故が起きると長く大きなひがいが出る。	は二酸化炭素を出さないことが説明されていますが,原子力発電は準国産エネル
			ギーであること,発電時に二酸化炭素を発生しない低炭素電源であることも特長
			です。参考にしてください。
		「燃料を使うのではなく、自然の力を利用して発電する方法もあるんだね。」	原子力発電も発電時に二酸化炭素を発生しない低炭素電源です。参考にしてくだ
		「日本はしげんの少ない国なので,燃料を使わずに再生可能エネルギーで発電	さい。
51	3-7	することがこれからは大切だね。」	因みに、令和7年2月に策定された第7次エネルギー基本計画で2040年に向け
51		「再生可能エネルギー」	ての政策の方向性として「再生可能エネルギー,原子力などエネルギー安全保障
		太陽や風など、ずっと利用することができるエネルギーのことです。二酸化炭	に寄与し、脱炭素効果の高い電源を最大限活用することが必要不可欠である。」
		素を出さない、大きなしせつを必要としないなどの利点があります。	としています。

【社会 506 新編 新しい社会 5 下】東京書籍

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		「これからの社会に向けて」	「日本が燃料としてたくさん輸入している石油や石炭などの使用は, 地球温暖化
		みさきさんたちは、これまでの学習をふり返り、日本ではこれからの社会に向	の原因の一つと言われる二酸化炭素を多く出します。」として,「日本では,世界
		けて、どのような取り組みが進められているのかを調べることにしました。	との結びつきを大切にしながら,再生可能エネルギーの開発などの新たな取り組
		「日本が燃料としてたくさん輸入している石油や石炭などの使用は,地球温暖	みを進めることが求められています。」とまとめられています。同じページに太
38		化の原因の一つと言われる二酸化炭素を多く出します。」	陽光発電,風力発電,地熱発電,バイオマス発電が写真付きで紹介されています
		「自動車工業の学習では,ガソリンを使わない自動車がつくられていたよ。」	が、原子力発電も発電時に二酸化炭素を発生しない脱炭素電源です。令和7年2
		「太陽光発電や風力発電などの,新しいエネルギーの開発が進んでいるよ。」	月に策定された第7次エネルギー基本計画では、再生可能エネルギーや原子力な
		日本では、世界との結びつきを大切にしながら、再生可能エネルギーの開発な	どの脱炭素電源を最大限活用することが必要不可欠とされています。今後の記述
		どの新たな取り組みを進めることが求められています。	の参考にしてください。

【社会 605 新編 新しい社会 6 政治・国際編】東京書籍

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		「原子力発電所事故からの復興」	原子力発電所事故からの復興について公平・客観的に書かれており、優れた記述
		2011(平成 23)年 3 月 11 日に起きた東日本大震災では,地震と津波に加えて,	となっています。
		福島県にある原子力発電所の事故が大きな被害をもたらしました。地震と、そ	
		の後の津波により、原子力発電所が爆発事故を起こし、大量の放射性物質がも	
		れ出しました。政府は周辺の市町村に避難指示を出し,何万人という人々が長	
		期間にわたってふるさとを離れて生活しなくてはならなかったのです。	
		これらの地域に人々がもどるためには、 <u>まず放射線の害をなくさなければなり</u>	「まず放射線の害をなくさなければなりません」とありますが、放射線被ばくに
55		<u>ません。</u> 政府は,放射性物質を取り除く除染作業を進めました。また,道路や	よる被害があったと誤解されるおそれがあるため、「まず放射線の量を減らさな
		水道などの生活を支える設備の復旧も進めました。	ければならなかった」への変更を提案します。
		こうした取り組みにより、少しずつ避難指示が解除され、人々が避難先からも	
		どるようになりました。避難指示が解除された後も、人々がもどってきて生活	
		を立て直し、まちがにぎわいを取りもどすには、多くの時間と努力が必要です。	
		現在も、復興に向けたさまざまな取り組みが行われています。「ふるさとにく	
		らす」という当たり前の願いをかなえるため、これからも国をあげて取り組ん	
		でいく政治の大きな働きが必要とされています。	
		1 ふたば未来学園中学校・高等学校(福島県広野町) 地域にこうけんする	復興に向けた前向きな取組を写真で紹介されている点を高く評価します。
		とともに、世界でも活やくする人材の育成をめざして、2015年に高等学校	
55	写真	が,2019 年に中学校が開校しました。写真は中学校の入学式の様子です。	
		2 輸出される農産物 農業の復興も進んでいます。福島県産の米や果物など	
		は,東南アジアを中心に外国にも多く輸出されています。写真は,2019年	

にマレーシアのスーパーで果物を PR した活動の様子です。 3 東日本大震災・原子力災害伝承館(福島県双葉町) 東日本大震災後の原 子力発電所の事故による被害や、復興の記録を伝えていくために、2020年 9月に開館しました。 4 福島ロボットテストフィールド(福島県南相馬市, 浪江町) 陸・海・空 のフィールドロボットや空飛ぶクルマの開発実証拠点として,2020年3月 に全面開所しました。 5 避難指示が出された区域(2011年4月22日時点) 原発事故で放射性物 質が飛び散って広い範囲に降り注ぎました。放射性物質からは放射線が出 ていて, たくさんの放射線をあびると健康に害があります。この時点では, 「警戒区域」と「計画的避難区域」に避難指示が出ていました。避難指示 が出なかった地域でも、放射線の害への不安から、多くの人々が自主的に 避難しました。 6 福島第一原子力発電所(福島県大熊町) 2011年3月11日の地震と、そ の後の津波により、爆発事故を起こしました。事故後のしょりには、何十 年もの時間とばく大な労力や費用が必要です。

【社会 407 小学社会 4】教育出版

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
		原子力発電の特ちょう	各発電方式について長所・短所をバランスよくまとめています。原子力発電につ
75		ウラン燃料を利用して発生させた熱で発電する。	いても丁寧に記述している点は高く評価します。
		・少ない燃料で多くの電気をつくることができる。	ただ、「燃料のほとんどを外国から買っている」、「燃料に限りがあるといわれて
		・発電のときに二酸化炭素を出さない。	いる」とあり、化石燃料と同じ弱点を持つと誤解されるおそれがあります。一度

	・燃料のほとんどを外国から買っている。	輸入した核燃料は、再処理により長く繰り返し利用できることから、原子力が準
	・燃料にかぎりがあるといわれている。	国産エネルギーと位置づけられていることが分かるような記述になるとさらに
	・燃料やはいき物のあつかいがむずかしく、安全のための十分なそなえが必要	よくなると思います。廃棄物については「安全に処理したあと,残ったものは地
	になる。	中深くに安全にうめる計画が進められている」というような記述がなされると、
	・事故などで有害な物質が放出されると、広いはんいに長くえいきょうをおよ	さらに良くなると思います。
	ばすことがある。	
	風力・地熱・太陽光発電の特ちょう	再生可能エネルギーの特徴がバランスよくまとめられています。
	・燃料をほとんど使わない。	
	・発電のときに,二酸化炭素やはいき物をほとんど出さない。	
77	・火力や原子力とくらべ、住宅の屋根などの小さなしせつでも電気をつくるこ	
	とができる。	
	いつでも、どこででも発電することができない。	
	・火力などにくらべ、発電のための費用がかかる。	
	原子力発電所の事故	原子力発電所の事故が起きたことだけでなく,運転が再開されていることにも触
	2011(平成23)年3月に発生した東日本大震災で、原子力発電所の一つが事故を	れている点を高く評価します。
	起こしました。この事故は、広いはんいで人々のくらしに大きなえいきょうを	
77	およばしています。	
	また、この事故をきっかけに、国内の原子力発電所のすべてが検査のため運転	
	を休止しました。その後,一部の原子力発電所では運転が再開されています。	
	(2023年6月現在)	

【社会 507 小学社会 5】教育出版

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
---	---	---------------------------	------------

		「新たな資源・エネルギーを求めて」	「使い終わった燃料をどのように処理するのかという問題」とありますが,使用
172	8	原油や石炭などの化石燃料を大量に燃やすと、多くのガスが排出され、地球温	済み燃料の問題は最終処分の問題ですので,「使い終わった燃料をどのように処
		暖化や空気のよごれなど,環境に大きなえいきょうをおよばします。そこで,	理・処分するのか」への変更を提案します。
	13-14	ガスを発生させず,より効率のよいエネルギーを使うことが考えられています。	「今も広い地域で人々のくらしに大きなえいきょうをおよばしています」とあり
172		日本では、資源・エネルギーを輸入にたよらず確保するためにも、原子力の利	ますが,漠然と「広い地域」「大きなえいきょう」とすると読者の主観により様々
172		用が進められてきました。	な印象となるおそれがあります。帰還困難区域を念頭に「広い地域」を「周辺地
		しかし、原子力の利用では、使い終わった燃料をどのように処理するのかとい	域」に変更することを提案します。
172	15-16	<u>う問題</u> や、事故が発生したときのえいきようなども考えなければなりません。	「日本では,原子力の他に,より安全性が高く,使いきる心配のないエネルギー
		2011 (平成23) 年に発生した東日本大震災では、原子力発電所の一つが事故を	の開発が進められています」との記述について、広くエネルギーを開発すること
		起こし、今も広い地域で人々のくらしに大きなえいきょうをおよばしています。	の重要性を認識させる記述であり、高く評価します。
		日本では、原子力の他に、より安全性が高く、使いきる心配のないエネルギー	
		<u>の開発が進められています。</u>	
	図	資源・エネルギーについて考えるときの見方の例	「資源・エネルギーについて考えるときの見方の例」としてエネルギー政策の原
172		安定して利用できる	則である3E+S が紹介されている点を高く評価します。
		環境にやさしい	
		費用をおさえられる	
		安全である	

【社会 607 小学社会 6】教育出版

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
50	12-14	<u>この地震と津波の影響で</u> ,福島第一原子力発電所で事故が起こり,有害な放射	「この地震と津波の影響で、福島第一原子力発電所で事故が起こり」とあります
		性物質が広い範囲に放出されて、多くの人々が避難をしなければならなくなり	が、「この地震による津波の影響で」としたほうがより正確です。
		ました。	

281	写真	「2011 年に起こった原子力発電所の事故(福島県)」	
		原子力発電は,発電するときに二酸化炭素をほとんど出さない発電方法とされ	Č
		る一方で,安全性や, <u>使用ずみ燃料の処分の問題など</u> で,課題をかかえていま	V
		す。1986(昭和 61)年のウクライナのチョルノービリ(チェルノブイリ)や,	
		福島での事故のように、ひとたび事故が起こると、周囲の環境や人々の暮らし	j
		に大きな影響をおよばします。	C

「使用ずみ燃料の処分の問題など」とあります。多くの教科書で「処理」と記載され、(最終的な)「処分」についての記載がない中で、課題として「処分」を挙げている点は高く評価します。ただ、処理と処分は結びついたプロセスですので、「処理・処分」と表現することを提案します。また、「原子力発電は、発電するときに二酸化炭素をほとんど出さない発電方法とされる」との記述は、原子力発電のメリットに触れたもので、全体としてバランスの取れた記述となっています。

【社会 408 小学社会 4年】日本文教出版

11					
頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例		
73	図	④電気がつくられ、送られてくるまで	火力発電所,水力発電所とともに,原子力発電所が分かりやすい図で紹介されて		
		原子力発電所 ウランを利用する。 じょう気が発電機を動かす。	いる点を高く評価します。		
73	図	⑤発電方法別の発電量のうつり変わり (2021年 経済産業省資料)	発電方法別の発電量の推移をグラフで示している点を高く評価します。		
74		原子力発電	原子力発電について写真入りで分かりやすく説明しています。その中で、「少な		
		・ウランを燃料として、発電する。少ない燃料で大きな電力がえられる。	い燃料で大きな電力がえられる」という長所を紹介していますが,その他は「地		
		・地震がおきたときや,事故がおこったときなどのきけん性について,人々の	震がおきたときや、事故がおこったときのきけん性について、人々のあいだに不		
		あいだに不安がある。	安がある」「燃料やはいき物の取りあつかいがむずかしい」といった短所のみが		
		・燃料やはいき物の取りあつかいがむずかしい。	記載されています。水力発電では、「燃料を使わないので二酸化炭素やはいき物		
			を出さない」と言う記述があり、これに対応して原子力発電が脱炭素電源である		
			ことが分かるような記述を加えることを提案します。廃棄物については「安全に		
			処理したあと、残ったものは地中深くに安全にうめる計画が進められている」と		
			いうような記述がなされると、さらに良くなると思います。		
75		「再生可能エネルギー」	再生可能エネルギーについては「いちど使っても資源を再生することができ、二		
		太陽光、水力、風力、地熱などの、自然の力を生かしてつくるエネルギーをさ	酸化炭素を出さないので、かんきょうにもやさしい」として長所のみが記載され		

	します。いちど使つても資源を再生することができ、二酸化炭素を出さないの	ています。バランスよく電源を組み合わせることを考えるうえで、各電源の長所・
	で, かんきょうにもやさしいとされています。	短所を知ることが大切ですので,再生可能エネルギーの短所についてもバランス
		よく記載することを提案します。

【社会 508 小学社会 5年】日本文教出版

頁	行	エネルギー・環境・原子力・放射線に関連した記述内容	コメント・修正文の例
247	6-13	地震のゆれや津波の被害を受けた福島第一原子力発電所では,原子炉がこわれ,	原子力発電所の事故後の復興の取り組みの中で、特に風評被害に触れている点を
		放射性物質が広いはんいに放出されました。人々はひなん生活を送り、さまざ	高く評価します。
		まな努力によって、少しずつ以前のくらしがもどってきました。しかし、安全	
		な農作物や水産物が生産できるようになったにもかかわらず、根拠のないうわ	
		さが流れました。この風評被害によって農水産物を生産しても出荷できない,	
		苦しい時期が続きました。	
247		キーワード「放射性物質」	小学生向けにうまく説明しています。
		放射線を出す能力(放射能)をもつ物質のこと。人体に多く取りこまれると悪	
		いえいきょうをあたえることがあります。	
247		⑦放射性物質検査をした米のしるし	復興の取り組みの例として示されており、他の教科書にはない良好事例です。

第5章 調査の記録

1. 会議等開催記録

本調査に関して、原子力学会教育委員会教科書調査ワーキンググループ(調査担当者) を置き、ワーキンググループ会議をオンラインにて開催し、随時メールで担当者間の意 見交換を行って調査を進めました。また、教育委員会に活動を報告しつつ調査を進めま した。

令和6年12月24日(月)第1回教科書調査ワーキンググループ会議 今後の進め方について意見交換を行いました。

令和7年3月6日(木)第2回教科書調査ワーキンググループ会議

今後の進め方について意見交換を行い,教科書学習指導要領および教科書調査の2グループに分けて調査を進めることとしました。

令和7年4月21日(月)第3回教科書調査ワーキンググループ会議

上記 2 グループにおける調査の進捗状況に基づき, 今後の進め方について意見交換を 行いました。

令和7年7月7日(月)第4回教科書調査ワーキンググループ会議

上記 2 グループにおける調査の進捗状況に基づき,今後の進め方について意見交換を 行うとともに、小学校教科書の調査報告書について検討しました。

令和7年9月2日(火)第5回教科書調査ワーキンググループ会議

上記 2 グループにおける調査の進捗状況に基づき, 今後の進め方について意見交換を 行うとともに, 小学校教科書の調査報告書について検討しました。

2. 教科書調査担当者および教育委員会委員

教科書調查担当者 * 教科書調查 WG 主查

#:技術士(原子力·放射線部門),(公社)日本技術士会員

委員氏名 所属

岡田 往子 原子力委員会, 東京都市大学

掛布智久 (公財)日本科学技術振興財団

笠井 重夫 # 元 (株) 東芝, 技術士事務所ヤサキ

菊池 裕彦 # 三菱重工業(株)

木藤 啓子 (一社)日本原子力産業協会

坂本 文徳 (国研)日本原子力研究開発機構

櫻井 俊吾 # 元 (株) 東芝電力システム社

杉本 純 元京都大学*

羽澄 大介 名古屋市立自由ケ丘小学校

藤本 望 九州大学

松永 一郎 (一社)日本原子力学会シニアネットワーク連絡会

芳中 一行 # (国研)日本原子力研究開発機構

若杉 和彦 (一社)日本原子力学会シニアネットワーク連絡会

若林 源一郎 近畿大学

調査協力

境 浩光 (株)科学新聞社

池田 絵里 (株)科学新聞社

オブザーバ

江崎 久美子 原子力発電環境整備機構

教育委員会委員

委員氏名 所属

北田 孝典 大阪大学(委員長)

小林 容子(株) メカニカルデザイン (副委員長)前川 真介東京電力ホールディングス (株) (幹事)

宮村 浩子 (国研)日本原子力研究開発機構(幹事)

石川 博久 (公財)原子力安全研究協会

宇埜 正美 福井大学

金川 説子 三菱重工業(株)

坂上 千春 (一社) 日本原子力産業協会

鈴木 裕子 (株)日立製作所

高田 英治 富士電機(株)

中田よしみ東京大学藤原充啓東北大学

湯口 康弘 東芝エネルギーシステムズ(株)

吉田 克己 東京科学大学

芳中 一行 (国研)日本原子力研究開発機構

 吉橋 幸子
 名古屋大学

 若林 源一郎
 近畿大学

 小崎
 完
 北海道大学(特別委員)

 瓜谷
 章
 名古屋大学(特別委員)

3. これまでに公表した報告書

- 1) 「初等・中等教育における「エネルギー」の扱いと高等学校学習指導要領に関する 要望書」平成8年5月 日本原子力学会
- 2) 「参考資料高等学校教科書の中の原子力に関する不適切な記述例」平成8年5月 日本原子力学会
- 3) 「参考資料高等学校,中学校教科書の中の原子力に関する不適切な記述例」平成 16 年 12 月 日本原子力学会
- 4) 「初等等・中等教科書および学習指導要領におけるエネルギー・原子力の扱いに関する要望書」平成17年8月 日本原子力学会
- 5) 「新学習指導要領に基づく小中学校教科書のエネルギー関連記述に関する提言」平成 21 年 1 月 日本原子力学会
- 6) 「新学習指導要領に基づく高等学校教科書のエネルギー関連記述に関する提言」平成 22 年 1 月 日本原子力学会
- 7) 「新学習指導要領に基づく小学校教科書のエネルギー関連記述に関する調査と提言」平成23年1月 日本原子力学会
- 8) 「新学習指導要領に基づく中学校教科書のエネルギー関連記述に関する調査と提言」平成24年3月 日本原子力学会
- 9) 「新学習指導要領に基づく高等学校教科書のエネルギー関連記述に関する調査と 提言」平成 25 年 3 月 日本原子力学会
- 10)「新学習指導要領に基づく高等学校教科書の原子力関連記述に関する調査と提言」 平成 27 年 3 月 日本原子力学会
- 11)「新学習指導要領に基づく中学校教科書の原子力関連記述に関する調査と提言」平成 28 年 6 月 日本原子力学会
- 12)「新学習指導要領に基づく高等学校教科書のエネルギー・環境・原子力・放射線関連記述に関する調査と提言―地理歴史科・公民科の調査―」平成 29 年 6 月 日本原子力学会
- 13)「高等学校理科教科書のエネルギー・環境・原子力・放射線関連記述に関する調査

- と提言―科学と人間生活・物理基礎・物理の調査―」平成 30 年 7 月 日本原子力 学会
- 14) 「高等学校の地理歴史,公民教科書のネルギー・環境・原子力関連記述に関する調査と提言-世界史,日本史,地理,現代社会,倫理,政治・経済教科書の調査-」 2019 (令和元)年6月 日本原子力学会
- 15)「新学習指導要領に基づく小学校社会・理科教科書のエネルギー・原子力関連記述 に関する調査と提言」2020(令和 2)年6月 日本原子力学会
- 16)「新学習指導要領に基づく中学校教科書のエネルギー・環境・原子力・放射線関連 記述に関する調査と提言-社会,理科,保健体育,技術・家庭の調査-」2021(令 和3)年7月 日本原子力学会
- 17)「新学習指導要領に基づく高等学校教科書のエネルギー・環境・原子力・放射線関連記述に関する調査と提言-地理歴史,公民,理科,保健体育,家庭および工業の調査-」2022(令和4)年8月 日本原子力学会
- 18)「新学習指導要領に基づく高等学校教科書のエネルギー・環境・原子力・放射線関連記述に関する調査と提言-地理歴史,公民および工業の調査-」2023(令和5)年9月日本原子力学会
- 19)「新学習指導要領に基づく高等学校教科書のエネルギー・環境・原子力・放射線関連記述に関する調査と提言-工業の調査-」2024(令和6)年10月 日本原子力学会

【平成 21 年 1 月以降の報告書は日本原子力学会の下記 URL で閲覧できます】 https://www.aesj.net/committee/permanent/educational_committee

【本報告書に関する問合せ先】日本原子力学会教育委員会(日本原子力学会事務局) https://www.aesj.net/