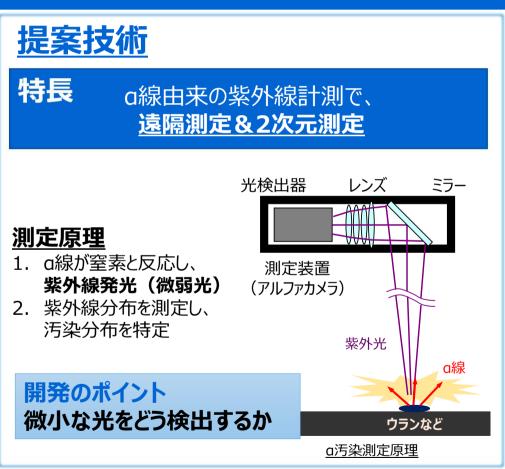
TOSHIBA

日本原子力学会 福島第一原子力発電所廃炉検討委員会 廃炉貢献賞 表面アルファ汚染可視化技術の開発ご紹介


2023.8.12東芝エネルギーシステムズ株式会社久米 直人

SPR-2023-000062 PSNN-2023-0589

技術のご紹介

1Fにおける核燃料由来のα放射能の測定技術

開発の経緯

2013-2015

原理検証

2015-2017

2018-2022

プロトタイプ開発※1

※1:本成果は、経済産業省/廃炉・汚染水対策事業費補助金により得られたものです。

原理検証機開発

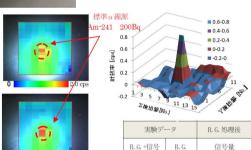


図2: B. G. 分布(左上) B. G. +信号分布(左下)

2.6cps

1.9cps

0.7cps

B. G. 除去後の信号分布(右図)

久米直人、"α線遠隔計測手法の開発 - 照明環境下への適用-"、日本原子力 学会2014年秋の大会より引用

測定系改良 レンズ (レンズ、遮蔽体開発) 遮蔽体 Measurement Direction

Fig. 1. Schematic image of Alpha Camera.

Naoto Kume, "Alpha Emitter Detection Systems Using UV Light Detector", Applied optics, vol.61, issue 6, pp. 1414-1419(2022)より引用

操作性向上

(駆動機構、ソフト)

IRID, https://irid.or.jp/wp-content/uploads/2021/12/2020010kotaihaikibuturev2.pdfより引用

現地モックアップ

アルファカメラ、台車 アルファカメラ吊具

IRID,https://irid.or.jp/wp-content/uploads/2021/12/2020010kotaih aikibuturev2.pdfより引用

今後の予定

廃炉作業を想定した新しい測定技術のプロトタイプの検証完了

今後、広く・長く、廃炉作業に貢献できる技術に発展させていきます。

人と、地球の、明日のために。

Committed to People, Committed to the Future.