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Since it is difficult to directly measure neutron energy, the neutron spectrum is estimated from the specific 
responses of the neutron reaction. Although several algorithms have been proposed to reconstruct the neutron 
spectrum, no attempt has been made to apply a multi objective optimization technique. This study is based on 
the idea that reconstructing the spectrum by taking into consideration various prior information 
simultaneously enables to obtain more reasonable results. The genetic multi-objective optimization scheme 
was applied to derive the Pareto front of spectrum from activation foil responses. The two objectives of 
maximizing the Shannon information entropy of the neutron spectrum and minimizing the relative error of the 
responses were considered. By applying the algorithm, we were able to successfully reduce the solution 
candidates to Pareto front and improve the validity of the unfolded spectrum.  
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1. Introduction1 
Neutron spectrum is usually reconstructed from the 

consequence of neutron reactions, and this process is 
called neutron spectrum unfolding. Since the neutron 
spectrum is important for radiation safety and 
measurement calibration, the spectrum has been 
reconstructed by using Boner spheres, activation foils or 
others [1,2]. These various responses are used for 
unfolding, but the mathematical principle is the same. 

Spectrum unfolding is the finding of the input from 
the response, which is mathematically in the category of 
the inverse problem [3]. It is often difficult to find the 
solution because there can be multiple inputs giving the 
same results. Therefore, in order to derive reasonable 
candidates from a large number of inputs, the solution 
should contain prior information such as physical 
constraints, statistical evaluation, and initial guess 
spectrum.  

There are various ways of unfolding depending on 
how the information is considered. For example, there 
are several as follows: Regularization method to avoid 
overfitting by limiting variables; Methods of reflecting 
statistical information such as Shannon Entropy and 
Fisher information into the spectrum; Bayesian inversion 
that reflects initial guess spectrum using Bayesian 
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statistics [4-8]. 
Although each of these methods reflected important 

information, there was no attempt to reflect multiple 
information at the same time. It is expected that 
reconstructing the spectrum considering multiple 
constraints will be more reasonable. In this study, the 
solution on the Pareto front, a set of solutions 
maximizing multiple objectives, was derived by 
applying a genetic algorithm to the unfolding problem 
and its effectiveness was evaluated.  

 
2. Spectrum unfolding algorithm 

2.1. Mathematical representation of spectra unfolding  

The response induced by the neutron flux can be 
expressed as  

 න 𝑅௠(𝐸)𝜙(𝐸)𝑑𝐸ஶ
଴ = 𝜇୫,    𝑚 = 1,2, … , 𝑀 (1) 

 
where 𝑅௠(𝐸)  is the response function, 𝜙(𝐸)  is 
neutron spectrum, and 𝜇୫ is measurement of the mth  
response. Since continuous functions cannot be treated, 
Eq. (1) is approximated by energy discretization as 
follows 
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෍ 𝑅௠,௜𝜙௜ே
௜ୀଵ ≈ 𝜇୫,     𝑚 = 1,2, … , 𝑀 (2) 

 
where 𝑅௠,௜  is the averaged response function, 𝜙௜  is 
the flux in ith energy bin and N is number of energy bins. 
These equations can be expressed in matrix form as 
shown below.   

 𝑹𝜙ሬ⃗ = 𝜇⃗     (3) 
 

where, the measurement 𝜇⃗  vector and the response 
matrix 𝑹 are known values, and the neutron spectrum 𝜙ሬ⃗  be calculated based on this values. In most cases, 
there is no inverse of the response matrix because the 
number of energy bins of the spectrum is greater than 
the number of response. In other words, 𝜙ሬ⃗  satisfying 
the Eq. (3) is not unique.   

 
2.2. Multi objective genetic algorithm  

Genetic algorithm is an optimization technique that 
was inspired by natural selection. Natural selection 
means that some properties increase the chance of 
survival and reproducing of an individual, thereby 
producing more offspring. These properties are inherited 
from the parent to the offspring and become a dominant 
characteristic in the population during the generation. 
John Holland developed genetic algorithms, inspired by 
natural selection. This algorithm has been applied to 
various problems because it can effectively find the 
global optimal solution in a wide search space and can 
be easily applied to nonlinear problems.  

 
2.2.1 Encoding scheme 

Expressing the solution as sequence of information 
similar to the genetic form is called encoding, which is 
essential for implementing a genetic algorithm. There is 
no clear rule for encoding the solution, and various 
genetic representations are possible depending on the 
problem. In this study, the neutron spectrum was 
expressed using the encoding scheme proposed by 
Richard M. Vega [9]. They defined several points on the 
energy axis of the logarithmic scale and then fitted them 
with the polynomial. Then the polynomial named 
shifting function was multiplied by the initial guess 
spectrum to represent the solution.  

 𝜙௨௡௙௢௟ௗ௘ௗ(𝐸௜) = 𝜙௚௨௘௦௦(𝐸௜)𝑆(𝐸௜)                                                       𝑖 = 1, … , 𝑁   (4) 

 
where 𝜙௨௡௙௢௟ௗ௘ௗ(𝐸௜)  is the unfolded spectrum, 𝜙௚௨௘௦௦(𝐸௜) is the initial guess spectrum and 𝑆(𝐸௜) is 
shifting function in the ith energy bin.  

 
2.2.2 Genetic operator 

A genetic operator is an operator that evolves a 
population by simulating evolutionary processes. It 
consists of selection, crossover, and mutation. The 

selection operator evaluates individuals based on the 
fitness function, and high-fidelity individuals become 
parents and deliver genetic information to the next 
generation. Crossover is the process of inheriting 
parent’s genetic information to offspring. Crossover 
operator can give a momentum to the evolutionary 
process because the offspring born to high-fidelity 
parents are likely to be a better solution for the previous 
generation. In this algorithm, a single point crossover 
was used to exchange information. Figure 1 shows the 
gene expression and shifting function of parents and 
offspring obtained by the crossover. The points shown in 
the figure are the genetic information and are defined as 
the real number in the energy axis. These points are 
fitted to the third order polynomial to derive the shifting 
function. The line shown in the figure is shifting 
function of the individual and this function is multiplied 
by the initial guess to represent the spectrum from the 
genetic encoding. Mutation encourages genetic diversity 
to prevent the solution from falling to a local minimum. 
The mutation operation was implemented to reset the 
genetic element if the random number is less than the 
mutation rate. 

 

 

Figure 1.  Genotype and polynomial fitting of individuals; (a) 
Genotype and shift functions of the parents and (b) Genotype 
and shift functions of the offspring inherited through one-point 
crossover. 

 
2.2.3 Fitness functions  

The fitness function determines how individual 
matches an objective. Solutions with high fitness are 
selected to inherit their genetic information in the next 
generation. There are two fitness functions applied in 
this study. The first goal was to minimize the relative 
error with the measured values and the second one was 
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to maximize the Shannon information entropy, and each 
term is defined as Eq. (5) and Eq. (6). Shannon proposed 
a value to quantify information disorder and called it 
information entropy. It is known that maximizing 
entropy leads to a probability distribution that best 
represents the present prior knowledge. This is called the 
Maximum Entropy Principle.  

 ෍ |൛∑ 𝑅௜,௝𝜙௝ே௝ୀଵ ൟ െ 𝜇௜|𝜇௜
ெ

௜ୀ௡      (5) 

 𝐻 = െ ෍ 𝑝௜ logଶ 𝑝௜௡
௜ୀ௡      (6) 

 
2.2.4 Pareto front  

Pareto efficiency is a state of solution when it is 
impossible to create a beneficial change without 
damaging another objective. The set of Pareto efficient 
is called the Pareto front. Figure 2 shows an 
optimization problem that minimizes both objectives 
simultaneously. In this case, each of the solutions has 
two objective values. Since the solution cannot exist 
outside the boundary indicated by the red line, the 
specific objective cannot be decreased without 
increasing the other objective at the boundary. The 
solution set of this red line is called Pareto front in this 
figure. 

 
Figure 2.  Pareto front of problem minimizing two objectives. 

 
 

3. Application 

Numerical problems have been made for applying the 
algorithm. A parallel neutron beam entered the water 
and foils were activated by moderated neutrons. The 
neutron energy was made to follow the Watt fission 
spectrum. The transport calculation was performed using 
MCNPX 2.7 code [10], which is highly recommended 
for neutron and the reaction cross section in ENDF/B 
-VII library was used.  

Four reaction rates for non-threshold reactions and 
three threshold reactions were calculated. The types and 
reaction rates of these reactions were listed in Table 1. 
The upper bound of each energy bin was divided into 
100 sections from 10-11 to 20 MeV and cross sections in 

each bin were averaged using flat flux weighting. 
Figure 3 shows the group cross section used in the 
calculation.  

 
Table 1.  Type of reactions used in the problem. 

Reaction Type Threshold 
(MeV) 

Reaction Rate 
(s-1) 

27Al(n,γ) 
59Co(n,γ) 
63Cu(n,γ) 
63Cu(n,α) 
197Au(n,γ) 
93Nb(n,2n) 

53Ni(n,p) 

- 
- 
- 

1.7422 
- 

8.9600 
0.5005 

6.04E+11 
1.09E+09 
1.57E+08 
1.80E+11 
1.95E+06 
2.14E+10 
7.12E+05 

 

 
Figure 3.  Group reaction cross sections used in the problem. 

 
As described in the previous section, the initial guess 

spectrum is essential to apply the algorithm. In reality, 
the initial guess spectrum is inevitably different from the 
actual value due to various reasons. To ensure that the 
algorithm works well even in the case of incorrect input, 
the initial guess was obtained by increasing the water 
density by 20% in the problem. It was used as a trial 
function of the algorithm. As a result of the increased 
density of water, the initial spectrum was estimated to be 
high in the low energy region.   

In this calculation, the solution is represented by a 
sequence of 10 real numbers that follow a uniform 
distribution from 0.6 to 1.4 at initial population. These 
values were equally spaced on the logarithmic energy 
axis and fitted with a third order polynomial. The size of 
population was set to 500. Pareto front was derived 
using the MATLAB built-in function.  

Figure 4 shows Pareto front derived from the genetic 
algorithm. It is reasonable that solutions located on the 
Pareto front are more valid than those that are not. 
Therefore, the neutron spectrum evaluator can 
drastically reduce the searching space to Pareto front by 
using multi objective optimization scheme.  

Figure 5 shows initial guess and three solutions 
derived by the algorithm. The position on the Pareto 
front and objective values are shown in Figure 4. In this 
problem, solutions located on the Pareto front have 
almost similar information entropy, so the entropy does 
not have a significant effect on the results. And the 
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lower the relative error of the solution, the more similar 
to the true spectrum. The solution was stable regardless 
of the number of iterations. 

 

 
Figure 4.  Pareto front derived by genetic algorithm after 300 
generations. 

 

 
Figure 5.  Initial guess and unfolded spectrum reconstructed 
by genetic multi objective optimization scheme.  

 
 

4. Conclusion 

In this study, the neutron spectrum was reconstructed 
by applying the genetic multi objective optimization 
scheme. The two objectives of maximizing the Shannon 
information entropy of the neutron spectrum and 
minimizing the relative error of the reaction rates were 
considered. The searching space of the neutron spectrum 
was limited to Pareto front by genetic algorithm, which 
allowed us to visually determine the sensitivity of the 
objectives. Therefore, this approach is expected to 
strengthen the validity of unfolded spectrum. 
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