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ARTICLE 

One-dimensional spherical ray-tracing extended to account for flat and cylindrical shields 
Jeffrey A. Favorite* 

Los Alamos National Laboratory, Los Alamos, NM, 87545, USA 

It is often desirable to compute the uncollided component (direct from the source) of a detected particle flux 
using some form of ray-tracing, which in one-dimensional spherical geometries is extremely economical. A 
simple method for treating a flat shield exactly, within the context of spherical ray-tracing, is presented. A 
method for treating a cylindrical shield approximately, using the average value of the azimuthal angle for each 
value of the polar angle that is used in the spherical ray-tracing, is presented. The source remains spherical. 
The methods are verified numerically with a test problem that also shows the importance of these corrections.  
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1. Introduction1

It is often desirable to compute the uncollided
component (direct from the source) of a detected particle 
flux [1]. In many cases, the uncollided component might 
be the only part that is needed – for example, the 
scattering, background, and detector effects can be 
removed from a gamma-ray spectrum, leaving only the 
uncollided peaks. Ray-tracing is an important tool for 
determining the contribution of uncollided particles. We 
consider a one-dimensional spherical source-shield 
system of nested homogeneous materials with an 
external detector measuring the uncollided flux. 
Ray-tracing the uncollided flux through this geometry is 
extremely fast, requiring only a numerical integral over 
the polar angle between 0 (a ray from the detector to the 
object center) and the angle that subtends the outermost 
source radius [2]. The geometry is symmetric with 
respect to the azimuthal angle. 

Spherical ray-tracing in this situation can easily be 
extended to account exactly for the case when the 
outermost shield layers are flat, rather than spherical. 
Spherical ray-tracing can be extended to account for the 
case when the outermost layers are cylindrical, rather 
than spherical, but only approximately because the real 
geometry is not symmetric with respect to the azimuthal 
angle. 

This paper describes these extensions to spherical 
ray-tracing and presents numerical test problems. 

2. Sphere-to-plane correction

Consider the system shown in Figure 1. The sphere
will be converted to a plane (the “box”) in the 
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ray-tracing code. The distance from the center of the 
sphere to the detector is rd. The radius of the sphere is rp. 
Draw a ray through the geometry from the detector 
point; the ray makes an angle θ with the line connecting 
the center of the sphere and the detector. Half of the 
track-length that the ray makes through the sphere is 
called a and the extra track length that will be added 
when the sphere becomes a plane is called b. The 
distance from the detector point to the plane along the 
ray is called c. With these definitions, it is clear that 

drcab )(cos ++=θ
and 
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Rearranging Eq. (1) and using Eq. (2), rearranged for c, 
yields 
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If b is needed separately, it can be obtained by 

Figure 1.  Spherical geometry in which the outer surface is to 
be treated as a plane in the ray-tracing.  
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subtracting a, which, by the Pythagorean theorem, is 

θ222 sindp rra −=  

Thus, all that is needed is a flag to the spherical 
ray-tracing code that an input radius is actually meant to 
be treated as a plane. In general, this correction should 
only be applied in this way to the outer surfaces. An 
exterior multilayered flat shield may be treated in this 
way, but no flat surface should be inside a real spherical 
surface. Furthermore, because this method essentially 
makes the plane infinite, spherical sources must not be 
converted to flat sources in this manner. 

3. Sphere-to-cylinder correction

Consider a Cartesian coordinate system with its origin
on the axis of a right circular cylinder of radius R and let 
that axis be coincident with the z axis of the coordinate 

system. See Figure 2. Let kjird
ˆˆˆ

ddd zyx ++=


 be a 

vector from the origin to a point outside the cylinder 
(this point will be the detector point). Let unit vector 

kjiv ˆˆˆˆ wvu ++=  point in the direction of an arbitrary ray

from dr


 that intersects the cylinder, and let g be the

distance from dr


to the cylinder. Let kjirc
ˆˆˆ

ccc zyx ++=
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be the vector from the origin to the point at which the 
ray crosses the cylinder. From Figure 2, 

cd rvr


=+ ˆg

or, taking the dot-product of both sides with v̂  and 
rearranging,  

vrrvrvr dcdc ˆcosˆˆ ⋅−=⋅−⋅=
 αg

where α is the angle between the ray and cr


 (Figure 2).

Applying the law of cosines for α yields 
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or, rearranging, 
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Using Eq. (8) in Eq. (6) and rearranging yields 
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Applying the Pythagorean theorem yields 
222
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The direction cosine of the ray with respect to the z axis 
is 

gzzw dc )( −=
rearrange this for zc, use the result in Eq. (10), and use 
that result in Eq. (9) to find 
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 and v̂  and simplify to find
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Now solve for g: 
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Whether to use the plus or minus sign in Eq. (15) is 
determined next. The second term on the right side 
represents the (positive) distance from cr


 to the point at

which a radial line from the cylinder axis would be 
normal to the direction vector v̂ ; i.e., the length of line 
segment d in Figure 2. The first term on the right side of 
Eq. (15) represents the (positive) distance from dr


 to

that same point. The required distance g is the difference 
of these terms, so the minus sign is chosen in evaluating 
Eq. (15). 

We now specialize to the case when the point (xd, yd, 
zd) is actually the detector point. Let it lie on the y axis 
“behind” the cylinder, so the point becomes (0, –rd, zd) 
and any ray from there to the cylinder points in the 
positive y direction, so v is always positive. Let the 
cylinder radius R be rc, the radius of the sphere that will 
be transformed to the cylinder of the same radius (akin 
to the rp of Sec. 2). Equation (15) becomes  
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Now for a spherical coordinate system centered at (0, 
–rd, zd), with the polar angle θ measured from the vector
from there parallel to the y axis (see Figure 2) and the 
azimuthal angle φ measured from a vector parallel to the 
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Figure 2.  Geometry for the sphere-to-cylinder correction. 
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axis of the cylinder (the z axis), we have 
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The cylinder is infinite in axial extent. Substituting for v 
and w in Eq. (16) yields 
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The distance h from the detector point to the sphere 
of radius rc centered within the cylinder is c + b from 
Sec. 2 (Figure 1), which, by rearranging Eqs. (1) and (4) 
(and using rc instead of rp), is 

θθ 222 sincos dcd rrrh −−=  

The quantity h – g is the (unsigned) length along the ray 
from the outside of the sphere to the inside of the 
cylinder, analogous to the b of Sec. 2. The quantity 
analogous to b + a of Sec. 2 is d = (g + d) – g or, 
recognizing that g + d here is the same as 

θcosdrcba =++  of Sec. 2 [Eq. (1)], and using Eq. 

(18) for g, 
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Unfortunately, the length d here depends on the 
azimuthal angle φ, which normally does not exist in 
spherical codes. One approach to approximating this 
length is to take the average value of d over φ for each θ. 
This involves taking the average value of g for each θ, 

)(θg , over the range of φ, 0 to 2π, and using an average 

value for d, )(θd , defined by 

)(cos)( θθθ grd d −≡
The symmetry of the problem allows the average of g to 
be taken over one-quarter of the range:  
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We rewrite Eq. (22) as 
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with  
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We now evaluate )(1 θg , first by rewriting it as 
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The integral has a closed-form solution [3]: 

where we recognize that θθ cos1sin2 i=− . Using the 
definition of the inverse hyperbolic tangent [4], 
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where z is a complex number, Eq. (27) becomes 

Using the properties of natural logarithms of imaginary 
numbers, Eq. (29) can be written 
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Now using the integral limits yields the simple result 
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Using Eq. (23) in Eq. (21) and using Eqs. (31) and 
(25) for )(1 θg  and )(2 θg  (and factoring out an rd) 

yields 

In our implementation, the integral in Eq. (32) is 
evaluated with Simpson’s rule with interval refinement 
[5]. 
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4. Results

The conversion of a spherical shield surface to a flat
shield surface or a curved cylindrical surface within a 
one-dimensional spherical ray-tracing code [2] was 
tested numerically using a 10-kg highly enriched 
uranium sphere (94.73% 235U, 5.27% 238U by weight; 
density 18.74 g/cm3; radius 5.03169 cm) centered within 
a stainless steel (density 7.86 g/cm3) box (flat walls) or 
can (cylindrical walls) with walls 1 cm thick. Reference 
results were computed using MCNP [6] with the 
multidimensional geometries and a point detector 
scoring uncollided photons only. The detector is 100 cm 
from the center of the source. The errors in the corrected 
spherical ray-tracing, relative to the reference results, for 
a low-energy gamma-ray line from uranium are shown 
in Figure 3. These are the diamonds and squares with 
values close to 0. The effect of using an average value of 
the azimuthal angle is seen when the cylindrical shield is 
close to the source. These errors are compared with the 
errors made when the box and cylinder shields are 
assumed to be spherical for purposes of spherical 
ray-tracing, which are 27% and 16%, respectively, when 
the shield is close to the source. Correcting for 
nonspherical shields is less important when the shield is 
far from the source. 

5. Conclusion

Spherical ray-tracing for uncollided photon fluxes is

very fast, but it is often not appropriate to be used when 
shielding is flat or cylindrical, even when the source is 
spherical. In this paper, corrections are derived for 
spherical ray-tracing codes to account for flat or 
cylindrical shielding. The corrections are made only to 
the shielding, not the source; only for the outermost 
layers of shielding; and only for the case when a line 
connecting the detector with the center of the source is 
orthogonal to the shielding. The equations could be 
corrected to account for non-orthogonal cases, but the 
sphere-to-flat correction would then be approximate, not 
exact, if the average-azimuthal-angle method were used. 

Obviously, spherical ray-tracing cannot accommodate 
every situation the analyst faces. As the problem gets 
more complex, eventually a more exact geometric 
treatment will be necessary. However, if the source is 
spherical and it is important to account for flat or 
cylindrical shielding, then the methods of this paper can 
be implemented. 

Acknowledgements  
The author is grateful to Ms. P. Paine, Los Alamos 

National Laboratory, for drawing Figures 1 and 2. 

References 
[1] A.B. Chilton, J.K. Shultis and R.E. Faw, Principles 

of Radiation Shielding, Prentice Hall, Inc., 
Edgewood Cliffs, New Jersey (1984), pp. 155-175, 
ISBN 0-13-709907-X.  

[2] J.A. Favorite, K.C. Bledsoe and D.I. Ketcheson, 
Surface and volume integrals of uncollided adjoint 
fluxes and forward-adjoint flux products, Nucl. Sci. 
Eng. 163 (2009), pp. 73-84. 

[3] Wolfram Mathematica on-line integrator; 
integrals.wolfram.com 

[4] Staff of Research and Education Association, 
Handbook of Mathematical, Scientific, and 
Engineering Formulas, Tables, Functions, Graphs, 
Transforms, Research and Education Association, 
New York (revised 1986), p. 266, ISBN 
0-87891-521-4. 

[5] W.H. Press, S.A. Teukolsky, W.T. Vetterling and 
B.P. Flannery, Numerical Recipes in FORTRAN: 
The Art of Scientific Computing, 2nd Ed. (reprinted 
with corrections), Cambridge University Press, 
(1994), pp. 130-133, ISBN 0-521-43064-X. 

[6] X-5 Monte Carlo Team, MCNP – A General 
N-Particle Transport Code, Version 5 – Volume I: 
Overview and Theory, LA-UR-03-1987, Los 
Alamos National Laboratory, (2003). 

Figure 3.  Error in the 144-keV line flux for the spherical 
source in a box and a cylindrical can with wall thickness 1 cm.
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