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When simulating neutron transport in systems with size many times bigger than the neutron migration area there 

are some difficulties associated with the choice of the parameters of the Monte Carlo method, such as the initial dis-

tribution, the number of neutrons in a generation, the number of the first active series. In addition, there is a problem 

with the calculation of the statistical error of the results. 

This paper proposes algorithms for calculation of statistical error, taking into account the correlations between the 

generations, built on the basis of statistical analysis of the results of calculations by Monte Carlo. In addition, simple 

rules are formulated for choosing the parameters of a Monte Carlo calculation scheme that have been tested on sever-

al problems, including the full three-dimensional model of the VVER-1000 core. The results of these VVER-1000 

calculations are used in this paper. 

It is shown that the formula for the variance in the light of correlations gives results similar to those obtained on 

multiprocessor computers, where each processor estimates the average value of the functional independently. 

The performance of the algorithm of selection of the first active series in the case when the initial distribution of 

the source is obviously far from reality is demonstrated. 

To justify the selection of the number of neutrons in a generation some preliminary results of calculations of Mai-

orov’s correction (theoretical value of bias in functional evaluation) are presented. 

KEYWORDS: Monte Carlo, statistical error, stochastic process, random variable, Maiorov’s correction, effective 

multiplication factor, reaction rates, full-scale three-dimensional model VVER-1000 

 

 

I. Introduction
1
 

When simulating neutron transport in systems with size 

many times bigger than the neutron migration area there are 

some difficulties associated with the choice of the parame-

ters of the Monte Carlo method, such as the initial 

distribution, the number of neutrons in a generation, the 

number of the first active series. In addition, there is a prob-

lem with the calculation of the statistical error of the results. 

This was the subject of many studies and a number of im-

portant theoretical results were obtained.1-6) Maiorov derived 

the formula to evaluate the systematic error of the results of 

any Monte Carlo calculation of functionals of the neutron 

flux. 1) Besides, he also studied another important issue of 

taking into account the influence of the correlation contribu-

tion to the functional in the neighboring generations on the 

accuracy of estimates of statistical error in the solution of the 

homogeneous neutron transport equation by Monte Carlo. 

This paper proposes algorithms for calculation of statis-

tical error, taking into account the correlations between the 

generations, built on the basis of statistical analysis of the 

results of calculations by Monte Carlo. In addition, simple 

rules are formulated for choosing the parameters of a Monte 

Carlo calculation scheme that have been tested on several 
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problems, including the full three-dimensional model of the 

VVER-1000 core. The results of these VVER-1000 calcula-

tions are used in this paper. Also the paper contains numerical 

results for the comparison of theoretical and experimental keff 

biases. 

Algorithms for statistical analysis of simulation results are 

implemented in the MCU code by means of which the test 

calculations were carried out.7) 

 

II. The General Scheme of the Monte-Carlo Method 

In solving problems of criticality by means of the Monte 

Carlo method one usually use generations with a fixed total 

weight of the neutron sources in one generation. In this 

scheme the phase coordinates of neutrons of the initial (zero) 

generation can be chosen arbitrarily. To calculate the 

non-linear functionals F such as the effective multiplication 

factor (keff) and the reaction rate in the registration areas a 

random variate  is used. Its sample values are elementary 

estimates xn, calculated for the so-called series, each of 

which includes a user-defined number of generations – NBAT 

(with NBAT = 1 notions of series and generation coincide) and 

each generation includes NTOT neutron histories. Thus if NGEN 

is total number of generations, N is number of series and 

NHIST is total number of neutron histories in calculation then 

N = NGEN/NBAT,  NHIST=NTOT NBAT N. 
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Estimations are done in such a way that their mathemati-

cal expectations М would be equal to F: 

FxM  . (1) 

The functionals are calculated as the arithmetic average 

values of elementary estimates: 
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where N is the number of simulated series. The solution is 

ensured by fulfilling the condition xM  = F. 

Hereafter we use the notation xn for both the sample val-

ues of the random variable  and the random variable itself. 

Similarly, the designation x  is used for both the sample 

mean values and for the random variable. 

Evaluation of the variance of the random variable xn 

(sample variance) is calculated by the formula 
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Standard deviation in this case is )( nxDs  . 

For estimation of the variance of the random variable x
on the assumption of the independence of random variables 

xn and constancy of their distribution functions for all n the 

usual formula is used: 

N

xD
xD

N
x

N
DxD n

N

n

n

N

n

n

)(
)(

11
)(

1
2

1


















 



. (4) 

By the central limit theorem confidence interval for the 

evaluation of the functional x  with 95% reliability (with a 

significance level of 0.05) is defined as  
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where m is the mathematical expectation, s is the dispersion. 

Thus, the error of calculation by Monte Carlo or, equiva-

lently, the confidence interval for the mean x  is 

determined by the variance )(xD which is usually calculated 

using Eq. (4) on the assumption of independence of xn. 

 

III. General Formula for Variance Considering 

Correlations between Serial Estimates 

Let’s apply the formula for the variance 
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After simple transformations we get 
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The first term of Eq. (6) is the sum of the variances of xn, 

the second – the sum of the covariance coefficients Kl,m of 

two random variables xl and xm. 

Applying Eq. (6) to Eq. (4) we obtain a general formula 

for the variance of the mean 
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In practical calculations of the variance using Eq. (7) 

there is a problem of determining of D(xn) for all n=1,N and 

covariance coefficients Kl,m. 

First problem can be solved using the assumption about 

the constancy of the distribution function of random va-

riables xn. In this case n

N

n

n NDxDx 
1

. However, rigorous 

justification of this provision requires additional research. As 

for the covariance coefficient Kl,m, calculation of its value for 

all l, m is associated with certain computational difficulties. 

Practically, the implementation of these two items, though 

possible, but extremely difficult, so we need to convert 

Eq. (7) so as to obtain a simple formula for calculation of the 

variance of the mean. 

 

IV. Elements of the Stochastic Processes Theory 

For each tallied functional there is a sequence 

 Nn xxxx ,...,...,,, 21  which is, generally speaking, a sto-

chastic process, because each element of the sequence xn is a 

random variable. 

Recall that a stochastic process X(t), defined on the set of 

T, is a function of t, whose values at each Tt  represent a 

random variable.8,9) There are stochastic processes with con-

tinuous time (T - interval on the real axis) and discrete-time. 

In our case T is a natural row:  NnT ,...,...,,2,1 , where n 

is the index of series. 

An important role in the theory is played by stationary 

stochastic processes whose probability characteristics do not 

change depending on t.8) Consequently, the average value 

m(t) is constant and the covariance function B(t,s) depends 

only on the distance between the arguments, i.e. |t - s|. From 

the last assertion it implies that the value of variance D(X(t)) 

is also constant. 

One of the main characteristics of stationary stochastic 

processes is the autocorrelation function r(k) or rk 

r(k)= corr(X(t), X(t+k)),  

where k > 0 is integer. Value of k is called a delay or lag, 

for which the correlation coefficient is calculated.  

To estimate the average value of a stochastic process us-

ing a single realization the following estimation is used: 





N

n

nx
N

x
1

1
. 

In the theory of stochastic processes it is proved that this 

average may serve as an estimate of the mathematical ex-

pectation of X(t), if a stochastic process is stationary and the 

autocorrelation function rk 0 at k.8)  

If a stochastic process is stationary then the estimation 

FxM   is unbiased. The second condition provides the 
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consistency of the estimate 0)( xD  at N . Name-

ly, at increase in the number of simulated generations the 

estimate of x  verges towards the true value of the func-

tional.  

Thus, the analysis of the function x  and the autocorrela-

tion function in dependence of N is required for statistical 

processing of Monte Carlo calculation results. Such an anal-

ysis has been performed for the model considered in this 

paper (see Section VI for the model description).10) This 

analysis shows that the process for the reaction rates and keff 

at uniform initial approximation is stationary and the auto-

correlation function rk 0 at k.  

 

V. Calculation Formula for Variance Considering 

Correlations between Serial Estimates 

Let’s transform Eq. (7) taking into account the stationarity 

of the process. By calculating the autocorrelation function by 

the formula  
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where n0–k = NSER0 (k > n0) is the number of the first active 

series, one can also calculate the variance 
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Equation (9) is well-known and was published, for exam-

ple, by Sveshnikov11) or by Gast and Candalore12). 
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ments of the correlation matrix with the exception of 

elements on the main diagonal 
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so, )(xD  is calculated as (see, for example,9))  
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where L is the number of elements of the autocorrelation 

function, significantly different from zero.  

In the MCU code it is assumed that rk is significantly dif-

ferent from zero if |rk| > 
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.9) At large values of 

N, i.e. N > 1,000, Eq. (9) may be simplified 
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This formula is used in MCU to calculate the variance. 

Recall that D(xn) is calculated by Eq. (3). 

With the use of multiprocessor computing the variance 

can be calculated by the equation identical to Eq. (4) 
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1
, P – number of processors, px  – esti-

mation of the functional obtained on p-th processor over N 

series. Estimations px  are independent, which is guaran-

teed by the implementation of multi-processor calculations 

in MCU and the choice of a pseudorandom number genera-

tor.13,14) The normalization process is conducted within each 

processor. 

 

VI. Brief Description of VVER-1000 Core Model 

The results of calculations by means of the Monte Carlo 

method of a few states of a full three-dimensional model of 

the Volgodonsk nuclear power plant VVER-1000 power unit 

No. 1 are analyzed.15) The modeled unit is at the minimum 

controlled power level achieved during the physical startup. 

Specifications of the model (the geometric dimensions of the 

fragments of the reactor, material composition, etc.) are 

based on design data and startup experiments data.  

The core consists of 163 hexagonal fuel assemblies (FA) 

of different types with different material composition of 

fresh fuel (enrichment of the isotope 235U – 1.6, 2.4, 3.3 and 

3.7% by weight) and is surrounded by a reflector on all sides. 

The model takes into account the position of control rods, 

complex structure of the reflector under core, the actual con-

figuration of the baffle, etc.  

The results of calculations considered are keff and the spa-

tial distribution of energy by height of the core. This paper 

presents the results of calculations of the model with the core 

divided into 14 layers by height, and thus the energy release 

was calculated in 2,282 nodes.  

The calculations were performed using the MCU code. 

The distinctive feature of the code is the possibility of calcu-

lating the statistical characteristics at the stage of processing 

the results obtained during the simulation. For this evalua-

tion functionals of all generations are recorded during the 

simulation in a separate file and processed after the end of 

the calculation.  

 

VII. Calculated Results 

Obviously, to calculate accurate estimates of the variance 

it is sufficient to nullify the effect of correlations between 

the generations. Earlier, the MCU code used a standard me-

thod; NBAT successive generations are united into series.16) In 

this case it was assumed that for sufficiently big values of 

NBAT, the variance can be calculated by Eq. (4) without tak-

ing into account the correlations between the series. 

However, as computational studies show (see Fig. 1), the 



Evaluation of the Statistical Error in the Results of Calculations of Full-Scale Three-Dimensional Model of VVER-1000 779

VOL. 2, OCTOBER 2011

 

 

correlation corrections can be reduced, but it is impossible 

to make it equal to zero. 

To test the algorithm for variance evaluation by Eq. (9) 

calculations have been performed using the model de-

scribed in Section VI. Figure 2 shows the comparison of 

calculated variances for some states of the model (the 

number of neutrons in the generation NTOT = 2,000, the 

total number of simulated histories = 4.8109, uniform ini-

tial distribution) with those obtained using independent 

calculations on 24 processors according to Eq. (13) (each 

processor modeled 2108 histories). 

Despite the fact that the statistical error in calculating 

the variance by Eq. (13) was ~30%, the results show good 

agreement as demonstrated in Fig. 2 by the fact that the 

difference in the results behave in a stochastic manner with 

the average sample value close to zero (when analyzing all 

2,282 nodes).  

Obviously, the stationary stochastic process in the first 

series may influence the initial distribution of neutrons, 

which is far from correct, and correctly chosen parameter 

NSER0 can guarantee stationarity of the process starting with 

the first series. To solve this problem MCU uses two ap-

proaches.  

The first one is described, for example, by Oleynik.
17) It 

is proposed to choose the initial distribution of neutrons as 

the result of the approximate solutions of matrix equation. 

Studies have shown that for all considered states the uniform 

distribution is good enough to make results of calculations 

with NSER0 = 1 and 2,000 coincide with the "exact" solution 

(for sufficiently large N = 105) even for the state with stuck 

control rods in one of the FA’s in which variation factor is of 

the order of 20.10)  

Thus, together with the initial distribution of neutrons ob-

tained from the solution of the approximate matrix equation 

with coextensive fractioning of the core into 163 (FA = ob-

ject) and 2,282 objects (FA layer = object) the behavior of a 

stochastic process with an unreal initial approach have been 

analyzed. Namely, it is the case when a point source is lo-

cated far enough from the most power stressed region of the 

core for the mentioned above state with stuck control rods.  

Figure 3 demonstrates the behavior of estimates of keff in 

dependence on the number of simulated generations (NTOT = 

3,000, NBAT = 400) for different initial distributions of neu-

trons. When it was taken from the approximate solutions of 

the distribution matrix, the mathematical expectation of the 

stochastic process behaves as a constant starting from the 

first series in contrast to the point source. 

The second approach is based on the fact that the first 

serial estimation taken into account should be in close 

proximity to the final result that is obtained by simulating a 

sufficient number of series such that the value nDx  is not 

so big. Then it can be assumed that the distribution of neu-

trons in the recorded field is close enough to the real one. 

Thus, the algorithm checks if the estimation of the functional 

for this series is within two standard deviations of the ran-

dom variable xn from the mathematical expectation. If the 

estimate does not belong to this interval, the estimate of the 

functional for this series is discarded. To prevent accidental 

hitting the specified interval the algorithm requires that the 

Standard deviation S1 with regard to correlations 

(unit: 0.01%) 
      34   

     37  36  

    32  32   

   22  28  35  

  16  24  32   

 16  21  27  34  

15  17  25  32   

 15  18  28  34  

  16  25  32   

   18  30  36  

    26  35   

     32  38  

      36   

Standard deviation S2 

 obtained from the calculation on 24 processors  

(unit: 0.01%) 
      38   

     36  41  

    31  38   

   22  28  37  

  17  23  32   

 14  21  25  31  

17  17  20  30   

 16  16  27  35  

  21  22  27   

   19  26  33  

    21  29   

     26  39  

      26   

(S1 -S2)/S2100(%) 
      -11   

     3  -12  

    3  -16   

   0  0  -5  

  -6  4  0   

 14  0  8  10  

-12  0  25  7   

 -6  13  4  -3  

  -24  14  19   

   -5  15  9  

    24  21   

     23  -3  

      38   

 
Fig. 2 Comparison of statistical errors obtained by Eqs. (9) and 

(13) for power production in the central layer of the core of 

VVER-1000 at 60 degrees turn symmetry, %. 

Fig. 1 The ratio of the variance D(9), calculated by Eq. (9) to 

the variance D(4), calculated by Eq. (4) for different values of 

NBAT in the node with maximum power of the VVER-1000 

core 
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condition had been met three times in a row. For the task in 

consideration the algorithm gives NSER0 = 3 (the first two 

serial estimates were not included, and the subsequent fall 

into the interval). 

Figure 3 shows that at this approach the mathematical 

expectation of the stochastic process is almost constant. 

It should be noted that the calculation results presented in 

Fig. 3 are preliminary, and in the future we plan to explore 

the influence of the initial distribution of neutrons on statio-

narity of the stochastic process in more detail. 

It is well known that in Monte-Carlo calculations with 

normalization process (number of fission neutrons is reduci-

ble to fixed number NTOT) estimates of functionals calculated 

by Eq. (2) are biased and the bias decreases with the increase 

of the number of neutrons in generation.3,18) In the MCU 

code normalization process is used after simulation of each 

generation by scheme which was developed by 

Frank-Kamenetsky16). A lot of works are dedicated to the 

theoretical solution of the problem. A significant result was 

obtained by Maiorov.1) He strictly deduced the asymptotic 

formula for the systematic error of the 1-st kind M  of 

arbitrary estimation of any functional (Maiorov’s correction 

M ): keff, reaction rates in tallies and etc. Maiorov’s correc-

tion is calculated by the formula:1)  

  ,
11 1
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where F – the desired value of the functional, N - the number 

of simulated generations, <kn> - the total weight of the neu-

tron generation number n. 

This formula is implemented in MCU and allows us to es-

timate the systematic error of the first kind of results 

calculated with a given value of NTOT. It provides the relia-

bility of the estimates. The use of this approach gave us 

some preliminary results. 

Figures 4 and 5 show the theoretical and experimental 

bias depending on different values of NTOT for keff and power 

production in the most stressed node of the core in one of the 

critical states of three-dimensional full-scale model of the 

VVER-1000. The values of the experimental bias are ob-

tained at comparison with the "exact" results of calculations 

for a large value of NTOT = 104 neutrons. Theoretical (Mai-

orov’s correction) and experimental estimations of bias are 

practically the same, which confirms the practical value of 

Eq. (14). In the future we plan to address the problem of bias 

using other problems including pin-by-pin calculations of 

VVER cores. 

 

VIII. Conclusion 

In this paper we have described algorithms for calculation 

of statistical error, taking into account the correlations be-

tween the generations and built on the basis of statistical 

analysis of the results of calculations by means of the Monte 

Carlo method. It is shown that the formula for the variance 

in the light of correlations gives results similar to those ob-

tained on multiprocessor computers, where each processor 

estimates the average value of the functional independently. 

The adjusted estimate of statistical errors allows more relia-

ble selection of the required number of simulated 

generations to achieve the required accuracy.  

We have presented some preliminary results of calcula-

tions of the full three dimensional model of a VVER-1000 

reactor core and demonstrated performance of the algorithm 

of selection of the first active series in the case when the 

initial distribution of the source is obviously far from reality. 

The results for NSER0 = 3 are compared with results for NSER0 

= 1 obtained using near-real initial distribution which was 

taken from the solutions of matrix equations. Good agree-

ment is observed.  

Fig. 3 Dependence of keff on the number of the simulated series. 

Fig. 4 Comparison of theoretical and experimental estimates of 

bias in keff for VVER-1000 core. 

Fig. 5 Comparison of theoretical and experimental estimates of 

bias in the node with maximal energy in the central height layer 

of VVER-1000 core. 
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To justify the selection of the number of neutrons in a 

generation NTOT preliminary results of calculations of Mai-

orov’s correction (theoretical value of bias in functional 

evaluation) are presented. It is shown that the value of Mai-

orov’s correction is in good agreement with the 

experimentally obtained results of the bias. 
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