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Secondary electrons are commonly used for imaging in scanning electron microscopes, with applications ranging 
from secondary electron doping contrast in p-n junctions, line-width measurement in critical-dimension scanning 
electron microscopy and dimensional parameters evaluation in the production of masks and wafers in the semicon-
ductor industry, to the study of biological samples. This paper describes the secondary electron emission yield 
calculated using two different Monte Carlo approaches. In the first, based on the energy straggling strategy, one takes 
into account all the single energy losses suffered by each electron in the secondary electron cascade. This method has 
been demonstrated to be very accurate for the calculation of the secondary electron yield and of the secondary elec-
tron energy distribution as well. An alternative way to calculate the secondary electron yield is based on a continuous 
slowing down approximation and uses as input the electron stopping power of the material being considered. As this 
work demonstrates that the secondary electron yields calculated using the two approaches are very close and in 
agreement with the experiment, the much faster continuous slowing down approximation is recommended. On the 
other hand, if other physical quantities, such as the secondary electron distributions, are required, the energy strag-
gling strategy should be preferred, even if it requires much longer CPU times, due to its stronger physical 
background. 
KEYWORDS: Monte Carlo, secondary electron emission, energy straggling, continuous slowing down approxi-
mation 

 
 

I. Introduction1

Secondary electron emission is a process where primary 
incident electrons impinging on a surface induce the emis-
sion of secondary electrons. The number of the emitted 
secondary electrons divided by the number of the incident 
electrons is the so-called secondary electron emission yield. 
The secondary electron emission yield is measured as the 
integral of the secondary electron energy distribution over 
the energy range from 0 to 50 eV.  

 

The Monte Carlo (MC) calculation of the secondary elec-
tron emission yield can be performed either taking into 
account all the details of the many mechanisms of the elec-
tron energy loss,1-3) or assuming a continuous slowing down 
approximation.4-8) The use of the first approach has stronger 
physical basis but, due to the detailed description of all the 
collisions in the secondary electron cascade, it corresponds 
to a scheme very time consuming. The continuous slowing 
down approximation represents instead an approach which 
saves a lot of CPU time. Its physical foundation is, on the 
other hand, more questionable. This paper reports about the 
MC simulations of the secondary electron emission from 
polymethylmethacrylate (PMMA), silicon dioxide and alu-
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minum oxide, insulating materials with many technological 
applications, obtained with the two approaches. It demon-
strates that, if we limit ourselves to the calculation of the 
yield as a function of the primary energy, the two Monte 
Carlo schemes give equivalent results for any practical pur-
poses.  

Secondary electrons are used for imaging in scanning 
electron microscopes, with applications ranging from sec-
ondary electron doping contrast in p-n junctions,9-13) 
line-width measurement in critical-dimension scanning elec-
tron microscopy,14-19) to the study of biological samples.20,21) 

The MC scheme based on the energy straggling strategy 
takes into account all the single energy losses suffered by 
each electron in the secondary electron cascade.1-3,9,18) This 
method is very accurate for the calculation of the secondary 
electron yield and energy distribution as well.1-3,9,11,12,18,19) 

The mentioned alternative MC scheme to calculate the sec-
ondary electron yield, based on a continuous slowing down 
approximation, uses as input the electron stopping power of 
the material being considered.6-8)  

The secondary electron yields calculated using the two 
approaches are very close. What is more, the two MC 
schemes give results in satisfactory agreement with the ex-
periment. This means that, for the calculation of the 
secondary electron yield, the continuous slowing down ap-
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proximation should be preferred, being much faster (more 
than ten times) than the more detailed scheme. If, on the 
other hand, secondary electron energy distributions are re-
quired, the continuous slowing down approximation cannot 
be used and the detailed scheme becomes mandatory, even if 
it is much more CPU time consuming.  

 
II. Cross Sections 

In order to describe the processes that occur when an 
electron beam penetrates in a solid target, we need to calcu-
late the elastic and the inelastic collisions suffered by the 
electrons traveling in the solid. In each collision event the 
incident electrons both loses energy and changes its traveling 
direction.  

The nuclear collisions, due to the large mass difference 
between the electron and the atomic nucleus, are nearly elas-
tic: they strongly affect the direction of the incident electron, 
while the energy transfer is negligible. 

The energy dissipation of the incident electron mainly 
occurs through atomic electron excitations or ejections, 
plasmon excitations, phonons creation and annihilation, and 
electron-polaron interactions. These scattering processes also 
influence the electron trajectory in the solid.  
 
1. Elastic Scattering 

The differential elastic-scattering cross section calculation 
of electrons interacting with free and bound atoms requires 
numerical quantum-mechanical calculations. The elastic 
scattering process was treated by calculating the phase shifts. 
Since the large-radial coordinate asymptotic behavior of the 
wave function is known, the phase shifts can be computed 
by solving the Dirac’s equation for a central electrostatic 
field up to a large radius for which the atomic potential can 
be safely ignored (Mott cross section: Relativistic partial 
wave expansion method ). For a recent review of the method, 
see Yablonski et al.22) Details of the present calculations can 
be found in Dapor.23,24)

 The atomic potential used for the 
elastic scattering calculation was that of Hartree-Fock. Since 
electrons are identical particles, the exchange was included 
in the calculations, as low-energy elastic scattering was 
treated: indeed, the incident electron may be captured by an 
atom with emission of a new electron. When the target atom 
is bound in a solid, the outer electronic orbitals of the atom 
are modified. In order to take into account such a change, 
solid-state effects have to be introduced. To describe sol-
id-state effects, the muffin-tin model was used in which the 
potential of each atom of the solid is altered by the near-
est-neighbor atoms. 

 
2. Inelastic Scattering and Dielectric Function 

The inelastic interactions with the target electrons is de-
scribed by the dielectric function.25) For a recent review of 
the subject, see Taioli et al.26) In the Hartree atomic units 
where ħ=m=e=1 (ħ is the Planck’s constant divided by 2π, m 
the electron mass, and e the electron charge), the inverse 
inelastic mean free path λ−1

inel and the stopping power 
–dE/ds are given, respectively, by 

,),(1 ∫=− ωωλ dEpinel  (1) 

,),(∫=− ωωω dEp
ds
dE  (2) 

with integrations extended over all the allowed values of the 
energy transfer ω. Here the function p(E,ω) is the probability 
for energy loss ω per unit distance traveled by an electron of 
energy E. If q is the momentum transfer and ε(q,ω) is the 
complex dielectric function describing the response of the 
medium, then p(E,ω) is given by 
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Using the above theory, Ashley has shown that the inverse 
inelastic mean free path and the stopping power can be well 
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and Wmax = E/2 is the maximum energy transfer.27) 

 

3. Generation of Phonons 
When their energy becomes lower than 20 eV, another 

energy loss and angular deflection mechanism for the elec-
trons traveling in an insulating material is represented by the 
electron-phonon interaction. For the present work we have 
calculated it according to the Fröhlich theory.28) Fröhlich 
considered, in particular, the interaction of free conduction 
electrons with the longitudinal optical mode lattice vibra-
tions. The interaction with the lattice corresponds to the 
absorption and to the generation of phonons. As the phonon 
generation probability, corresponding to an electron energy 
loss Wph, is much higher than the phonon absorption proba-
bility, the last can be safely neglected. 
 
4. Generation of Polarons 

The generation of a polaron by a low-energy electron 
moving in an insulating material corresponds to an induced 
polarization field that has a stabilizing effect on the moving 
electron: the polaron is a quasi-particle with a relevant effec-
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tive mass moving in a dielectric medium, consisting of an 
electron, or a hole created in the valence band, with its pola-
rization cloud around it. According to Ganachaud and 
Mokrani the inverse inelastic mean free path for a 
low-energy electron to be trapped in the ionic lattice is given 
by 

( ) ,1 E
polaron CeE γλ −− =  (9) 

where C and γ are constants depending on the material.1) 
 
III. Monte Carlo Schemes 
1. Energy Straggling Strategy 

If r is a random number uniformly distributed in the in-
terval [0,1], every step length ∆s of each electron traveling in 
the solid is calculated assuming the Poisson statistics, so that 
∆s = - λ ln r. In this equation, λ is the electron mean free 
path including all the scattering mechanisms involved. Its 
reciprocal, i.e. the so called inverse inelastic mean free path, 
can be expressed as the sum of all the inverse mean free 
paths of the interactions of the electrons with the target: in 
particular it is necessary to take into account the inverse 
mean free path relative to the elastic interactions among the 
incident electrons and the screened atomic nuclei, λ−1

el, that 
relative to the inelastic interactions among the incident elec-
trons and the atomic ones, λ−1

inel, that relative to the 
electron-phonon interactions, λ−1

ph, and that relative to the 
electron-polaron interaction, λ−1

polaron, so that λ−1 = λ−1
el + 

λ−1
inel + λ−1

phonon + λ−1
polaron. Details about this Monte Carlo 

strategy can be found in Ganachaud and Mokrani,1) and in 
Dapor et al.18) Using random numbers one establishes the 
kind of collision. If the collision is inelastic, the energy loss 
is calculated according to the specific inelastic scattering 
cross section (electron-electron, electron-phonon, or elec-
tron-polaron). If the collision is elastic, the scattering angle 
is calculated according to the Mott cross section.  

When a secondary electron reaches the target surface, it 
can be emitted only if its energy E and its direction ϑ  with 
respect to the normal to the surface satisfy the condition 

,cos ξϑ ≥E  (10) 

where ξ is electron affinity, i.e. the potential energy barrier 
between the vacuum level and the minimum of the conduc-
tion band. The transmission coefficient T is given by 
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Once calculated the transmission coefficient, which is given 
by Eq. (11) if the condition (10) is satisfied and zero other-
wise, the code generates a random number, t, uniformly 
distributed in the range (0,1). It allows the secondary elec-
tron to be emitted into the vacuum if the condition t < T is 
satisfied. Otherwise, the secondary electron is specularly 
reflected without energy loss. Notice that the last part of the 
trajectory of the electrons which are not able to emerge (the 
specularly reflected ones) is followed by the code as well, as 
they can reach the surface again with the energy and angle 

necessary to emerge. Furthermore, during the last part of 
their travel, they can contribute to the entire cascade pro-
ducing ulterior secondary electrons. This Monte Carlo 
scheme takes into account the entire cascade of secondary 
electrons. 

 
2. Continuous Slowing Down Approximation 

The step-length ∆s is given by ∆s = - λel ln r where r is a 
random number uniformly distributed in the range [0,1] and 
λel is the elastic mean free path. The energy loss ∆E along 
the segment of trajectory ∆s is approximated by the equation 

,s
ds
dEE ∆=∆  (12) 

The electron-atom elastic scattering deflections are calcu-
lated using the Mott cross section. 

The secondary electron yield is calculated, according to 
Dionne,4) Lin and Joy,5) Yasuda et al.,6) and Walker et al.,7) 
assuming that (i) the number dn of secondary electrons gen-
erated along each step length ds, corresponding to the energy 
loss dE, is given by 

,1

ss

dEds
ds
dEdn

εε
==  (13) 

where εs is the effective energy necessary to generate a sin-
gle secondary electron and (ii) the probability P(z) that a 
secondary electron generated at depth z will reach the sur-
face and will emerge from it follows the exponential decay 
law 

,)( szezP λ−=  (14) 

where λs is the effective escape depth. Thus the secondary 
electron emission yield is given by 

.1)( ∫∫ −== dEednzP sz

s

λ

ε
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IV. Results and Discussion 
The MC schemes described above account for the main 

interactions occurring to the secondary electrons along their 
travel in insulating targets.1) Statistical errors of both the 
kind of Monte Carlo calculations are similar and always 
smaller than 1%. 

Even if the physical meaning of the parameters appearing 
in the empirical laws describing these interactions is clear -- 
so that they are, at least in principle, measureable -- practi-
cally they can be determined, at the moment, only through 
an analysis of their influence on the simulated results and a 
comparison to the available experimental data.  

Using such a kind of analysis, the values of the parame-
ters for PMMA were determined and, in Fig. 1, we have 
reported the comparison with the available experimental data 
29,30) of the simulated results obtained using the detailed 
Monte Carlo scheme based on the energy straggling strategy 
(ES scheme in the following). We found out the best fit us-
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ing a least square fitting procedure with the following values 
of the parameters: ξ = 1.0 eV, Wph = 0.1 eV, C = 1.5 nm-1, 
and γ = 0.14 eV-1. Notice that, performing a similar analysis, 
Ganachaud and Mokrani found out, for amorphous Al2O3, 
the following values of the not a priori known parameters: 
ξ = 0.5 eV, Wph = 0.1 eV, C = 1.0 nm-1, and γ = 0.25 eV-1. 1) 

Also note that  the yield strongly depends on all these pa-
rameters. While both the electron affinity ξ and the electron 
energy loss due to phonon creation Wph are quantities that for 
many materials have been measured and whose values can 
be found in the scientific literature, less information are 
available concerning the two parameters characterizing C 
and γ (relative to the electron-polaron interaction). The 
Monte Carlo scheme based on the continuous slowing down 
approximation (CSDA scheme, in the following) also de-
pends on two not a priori known parameters: the effective 
escape depth, λs, and the effective energy necessary to gen-
erate a single secondary electron, εs. Using the ES curve 
determined by the comparison with the experimental data 
presented in Fig. 1, it is possible to determine the values of 
λs and εs of PMMA which correspond to the least square best 
fit.  

The procedure is described in Figs. 2 and 3.  
In Fig. 2, in particular, the value of λs was set to 1.0 nm. 

The comparison between the CSDA and ES results is shown, 
with εs ranging from 6 eV to 9 eV.  

As the best value of εs is 7.5 eV, Fig. 3 reports the com-
parison corresponding to εs = 7.5 eV and allowing λs to 
range between 0.5 and 1.5 nm.  

The comparisons of the results of the CSDA code to the 
available experimental data29-33) for PMMA, SiO2, and Al2O3 
are shown in Figs. 4, 5, and 6, respectively.  

The values of the parameters, reasonably in agreement 

with other physics reference data1,5), were determined in or-
der to get the least square best fit of the results of the CSDA 
code to the experimental data. They are collected in Table 1. 
In Tables 2, 3, and 4, the calculated χ2 values, considered to 
quantitatively evaluate the agreement between the CSDA 
Monte Carlo simulated data (obtained using the parameters 
in Table 1) and the examined experimental data are reported, 
along with the number ν of degrees of freedom utilized for 
each comparison. For the reader convenience, we have also 
reported the lower critical values of the χ2 distribution for 
any given ν, along with the corresponding probability 
(p=0.99) of exceeding these critical values. As all the calcu-
lated χ2 are significantly smaller than the critical ones, this 
means that, in the hypothesis that the Monte Carlo data 

Fig. 1 Comparison between Monte Carlo calculations and expe-
rimental data of polymethylmethacrylate (PMMA) secondary 
electron yield as a function of the primary electron energy. Sol-
id line represents Monte Carlo calculations based on the energy 
straggling strategy and obtained with ξ = 1.0 eV, Wph = 0.1 eV, 
C = 1.5 nm-1, and γ = 0.14 eV-1. Boxes are the Matskevich et al. 
experimental data, taken from Yasuda et al.6) Circles are the 
Boubaya and Blaise experimental data.29) Triangles are the Rau 
et al. experimental data.30)  

 

Fig. 2 Comparison between Monte Carlo calculations of PMMA 
secondary electron yield as a function of the primary electron 
energy. Solid line represents Monte Carlo calculations based on 
the energy straggling strategy (see Fig. 1 for details). Symbols 
are Monte Carlo calculations based on the continuous slowing 
down approximation and obtained with λs = 1.0 nm and 
εs = 6.0 eV (squares), εs = 7.5 eV (circles), εs = 9.0 eV (trian-
gles). 

 

Fig. 3 Comparison between Monte Carlo calculations of PMMA 
secondary electron yield as a function of the primary electron 
energy. Solid line represents Monte Carlo calculations based on 
the energy straggling strategy (see Fig. 1 for details). Symbols 
are Monte Carlo calculations based on the continuous slowing 
down approximation and obtained with εs = 7.5 eV and 
λs = 1.5 nm (squares), λs = 1.0 nm (circles), λs = 0.5 nm (trian-
gles). 
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approximate the experimental ones (the so-called null hypo-
thesis), there is a probability greater than the 99% that the 
observed discrepancies are due to statistical fluctuations. 
Similar results were found out also comparing the experi-
mental results to the ES Monte Carlo simulated data. 

The time of computation necessary to the ES code is much 
higher than the time of computation necessary to the CSDA 
code. For a typical simulation (1 keV electrons impinging on 
PMMA), the CSDA scheme is more than ten times faster 
than the ES one. For example, with a personal computer 
(2.83 GHz processor) for the case of the evaluation of the 
secondary electron yield of PMMA, using 105 primary elec-
trons and a primary electron energy of 1 keV, we found out 
that ES strategy requires more than 300 seconds of computa-
tion, while the CSDA code only spends 25 seconds of CPU 
time. The reason of this great difference in CPU time is re-
lated to the secondary electron cascade. The ES MC strategy 
requires that the entire cascade is followed. The CSDA MC 
code, on the other hand, is able to establish the number of 
secondary electrons produced at each step of every primary 
electron trajectory. Notice that a further advantage of the 
CSDA MC strategy is the reduced number of not a priori 
known physical parameters (only two against the four quan-
tities required by the energy straggling strategy). 

Of course the ES MC code is based on a stronger physical 

background and allows one to calculate other important 
properties such as the secondary electron energy distribu-
tion,2,3,9,11,12) and the lateral, angular, and depth 
distributions18) which are not accessible using the CSDA 
approximation.  

The advantage in using the CSDA code, in practical terms, 
with respect to just performing an empirical fit to the expe-
rimental data is related, of course, to other predictive 
capabilities of the Monte Carlo simulations. If it is, indeed, 
certainly true that, at the moment, the CSDA model requires 
a fit to existing data or to the results of the detailed simula-
tion to calculate its free parameters, one should take into 
account that if the parameters were known for a large num-
ber of materials, they could be used for investigating many 
problems, different from the one we have used to find out 
the values of the parameters; such as, for example, the de-
pendence of the secondary electron yield on the angle of 
incidence for any given primary energy, or the secondary 
electron emission from unsupported thin films (on both sides 
of the film), or the secondary electron emission yield from 
thin films deposited on bulk of different materials, and so on. 
Of course, all these possibilities, which will be the subject of 
further investigations, are not accessible to a simple empiri-
cal fit to the experimental data.  

Table 3 SiO2: comparison between the calculated χ2  and the 
lower critical values of χ2 distribution corresponding to a 
probability of 99%. As the calculated χ2 are significantly 
smaller than the lower critical value of χ2 distribution, the dis-
crepancies between CSDA Monte Carlo data and experimental 
results can be attributed with high probability (greater than 
99%) to statistical fluctuations, so that we can conclude that the 
CSDA Monte Carlo data corresponding to the parameters in 
Table 1 very well approximate the considered experimental 
data. 

 

 Calcu-
lated χ2 

Number ν 
of degrees 
of freedom 

Probability 
p of  

exceeding 
the critical 

value 

Lower 
critical  

value of χ2 
distribution 

Dionne31) 0,0366 6 0.99 0,872 

Joy and 
Joy32) 0,164 11 0.99 3,053 

 
Table 4 Al2O3: comparison between the calculated χ2  and the 

lower critical values of χ2 distribution corresponding to a 
probability of 99%. As the calculated χ2 are significantly 
smaller than the lower critical value of χ2 distribution, the dis-
crepancies between CSDA Monte Carlo data and experimental 
results can be attributed with high probability (greater than 
99%) to statistical fluctuations, so that we can conclude that the 
CSDA Monte Carlo data corresponding to the parameters in 
Table 1 very well approximate the considered experimental 
data. 

 

 Calcu-
lated χ2 

Number ν 
of degrees 
of freedom 

Probability 
p of  

exceeding 
the critical 

value 

Lower 
critical  

value of χ2 
distribution 

Dawson33) 0,905 11 0.99 3,053 

 

Table 1 Values of the effective escape depth, λs, and of the 
effective energy necessary to generate a single secondary elec-
tron, εs, obtained in order to get the best fit of the Monte Carlo 
code, based on the continuous slowing down approximation, to 
the available experimental data concerning the secondary elec-
tron emission yield. 

 

Material λs 
(nm) 

εs 
(eV) 

PMMA 1.0 7.5 
SiO2 0.5 12.0 
Al2O3 1.5 6.0 

 
Table 2 PMMA: comparison between the calculated χ2  and 

the lower critical values of χ2 distribution corresponding to a 
probability of 99%. As the calculated χ2 are significantly 
smaller than the lower critical value of χ2 distribution, the dis-
crepancies between CSDA Monte Carlo data and experimental 
results can be attributed with high probability (greater than 
99%) to statistical fluctuations, so that we can conclude that the 
CSDA Monte Carlo data corresponding to the parameters in 
Table 1 very well approximate the considered experimental 
data. 

 

 Calcu-
lated χ2 

Number ν 
of degrees 
of freedom 

Probability 
p of  

exceeding 
the critical 

value 

Lower 
critical 

value of χ2 
distribution 

Matskevich  
et al.6) 0.476 11 0.99 3.053 

Boubaya 
and Blaise29) 0.466 16 0.99 5.812 

Rau et al.30) 0.111 4 0.99 0.297 
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In conclusion, the very fast CSDA MC code is recom-
mended for the calculation of the secondary electron yield. If 
the secondary electron distributions are required, the ES MC 
strategy should be preferred, even if it requires much longer 
CPU time. 

 
V. Conclusion 

An analysis of the results of two different Monte Carlo 
approaches (energy straggling scheme and continuous slow-
ing down approximation scheme) for the determination of 
the yield of the secondary electrons emitted by insulating 
targets, in particular PMMA, SiO2 and Al2O3, was presented. 
The two approaches give similar results for what concerns 
the secondary electron emission yield as a function of the 
electron primary energy. Furthermore the simulated results 
are in excellent agreement with the available experimental 
data. The CSDA code is much faster than the ES code, so 
that it is recommended, also for its simplicity of implemen-
tation and for the reduced number of a priori not known 
physical parameters (just two against the four necessary to 
the ES code). If, on the other hand, secondary electron dis-
tributions are required, the ES strategy should be preferred, 
even if it requires much longer CPU time. 
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