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Two Monte-Carlo-based methods for computing the dominance ratio in reactor calculations are the Fission Matrix 

Method (FMM) and the Coarse Mesh Projection Method (CMPM). The FMM allows an estimate of the dominance 
ratio to be computed before the fission source has converged, but requires a fine mesh—and hence considerable 
computational resources—for sufficient accuracy. Conversely, the CMPM gives very accurate results on a coarse 
mesh with very little computational effort, but can be used only after the fission source has converged. In this paper 
we describe a new method called the Noise Propagation Matrix Method (NPMM) that has the same coarse-mesh ac-
curacy properties as the CMPM while also permitting an ‘on-the-fly’ estimation of the dominance ratio during fission 
source convergence. Like the CMPM, the NPMM uses the noise propagation matrix (NPM) in determining the do-
minance ratio. The two methods differ, however, in how the matrix is used to obtain the dominance ratio. A new 
derivation of the equations used to compute the NPM in a Monte Carlo calculation is presented that eliminates an ap-
proximation made in an earlier work on the CMPM. It is shown that by using the improved expression for the NPM, 
the dominance ratio can be found directly and simply as the largest-modulus eigenvalue of the matrix—thereby eli-
minating the more complicated time-series-analysis method used by the CMPM. Results for several problems are 
presented that demonstrate the validity of the method. 
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I. Introduction1 

The dominance ratio of a fissioning system is defined as 
the first harmonic eigenvalue divided by the fundamental 
mode eigenvalue. Its significance lies in two distinct areas. 
First, it is a property of the physical system, and hence is 
related to such aspects of the system as xenon stability. 
Second, it is a property of the transport equation, and hence 
is related to such aspects of the solution method as the fis-
sion source convergence rate and cycle-to-cycle correlation. 
Being able to determine the dominance ratio is thus impor-
tant to reactor designers and analysts as well as reactor 
physics methods developers. Accurate determination of the 
dominance ratio from Monte Carlo calculations has been the 
subject of considerable study in recent years.1–5) 

For many applications it is only necessary that the do-
minance ratio be an end result of the Monte Carlo 
calculation. There are some applications, however, in which 
an evolving estimate of the dominance ratio obtained 
‘on-the-fly’ during the calculation may be useful. It is known, 
for example, that using the standard power method for fis-
sion source iterations results in the tallies from successive 
fission generations (cycles) being correlated, and that this 
correlation must either be minimized or accounted for in 
order to determine accurate statistical uncertainties.6) It is 
also known that the degree of correlation can be estimated 
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from the dominance ratio. One method of minimizing the 
correlation between successive tallies is by combining mul-
tiple successive fission cycles into batches, and defining the 
tally variables over the batches rather than over the cycles.7) 
Here, an estimate of the dominance ratio obtained during the 
inactive cycle phase of the calculation is helpful in automat-
ically determining the number of cycles per batch to use 
during the active cycle phase. 

One means of estimating the dominance ratio using 
Monte Carlo is the fission matrix method (FMM).8) The 
FMM involves the division of the configuration space of the 
problem into a number of discrete cells. Element  ,i j  of 
the fission matrix is defined as the expected number of direct 
progeny fission neutrons born in cell i due to a parent fission 
neutron born in cell j. An estimate of the fission matrix may 
be easily obtained in Monte Carlo criticality calculations, 
and its eigenvalue spectrum determined by standard matrix 
algebra methods. The dominance ratio may then be esti-
mated as the ratio of the first-harmonic eigenvalue of the 
matrix to that of the fundamental mode. While the funda-
mental-mode eigenvalue of the fission matrix is a good 
estimate of the fundamental-mode eigenvalue of the Monte 
Carlo calculation, the same is not generally true of the 
first-harmonic eigenvalue and thus the dominance ratio will 
be in error.5) The error in the first-harmonic eigenvalue of 
the fission matrix is due to the spatial discretization, and 
may be reduced by refinement of the mesh. However, the 
corresponding increases in computer memory requirements 
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and computational effort severely limit the usability of the 
FMM for practical applications. It should be noted, however, 
that the FMM has the desirable characteristic that a rough 
estimate of the dominance ratio may be computed prior to 
fission source convergence.5) This gives a Monte Carlo code 
with a FMM capability the ability to estimate the dominance 
ratio during the source convergence process. 

The Coarse Mesh Projection Method (CMPM)—which 
evolved from a method based on the use of an autoregres-
sive-moving average (2,1) (ARMA(2,1)) fit—was developed 
to overcome the accuracy limitations of the FMM when used 
with a small number of large mesh cells.1–4) Like the FMM, 
the CMPM uses a spatial discretization. During the Monte 
Carlo calculation, quantities are tallied that will later be used 
to compute an estimate of the noise propagation matrix 
(NPM). At the completion of the Monte Carlo calculation, 
the NPM is determined and its left (adjoint) eigenvector 
corresponding to the eigenvalue with the largest modulus is 
calculated. The time series formed by taking the inner prod-
uct of this eigenvector and the source vector at each 
generation is an autoregressive order 1 process with a corre-
lation coefficient equal to the dominance ratio. The CMPM 
estimates the dominance ratio by computing this correlation 
coefficient. Unlike the case of the FMM, however, the 
CMPM generally produces an accurate estimate of the do-
minance ratio even for very coarse mesh. The only 
disadvantage of the CMPM (at least in its reported imple-
mentation to date) relative to the FMM is that the dominance 
ratio may not be computed until the fission source has fully 
converged.5) 

This paper introduces a new algorithm—termed the Noise 
Propagation Matrix Method (NPMM)—for computing the 
dominance ratio in Monte Carlo analyses. Like the CMPM, 
the method uses a determination of the NPM by the Monte 
Carlo code. The essence of the NPMM is that once an esti-
mate of the NPM is obtained, the dominance ratio is very 
simply found as the largest-modulus eigenvalue of the NPM. 

There are three aspects to the work reported on in this 
paper. First, it is shown that the mathematical derivation 
previously used to obtain the expressions governing the 
practical implementation of the CMPM can be improved 
upon, thus yielding an improved estimate of the NPM. 
Second, it is shown that the largest-modulus eigenvalue of 
this NPM provides an estimate of the dominance ratio that is 
identical to that which would result from the time series 
analysis of the CMPM had the same NPM been used. Finally, 
it is demonstrated that this method allows a reasonable esti-
mate of the dominance ratio to be determined prior to the 
convergence of the fission source. This method thus retains 
the coarse-mesh accuracy and computational efficiency of 
the CMPM while also permitting an ‘on-the-fly’ determina-
tion of the dominance ratio during source convergence. 

 
II. The Noise Propagation Matrix 

As mentioned in Section I, both the CMPM and the 
NPMM use a Monte-Carlo-generated NPM in computing the 
dominance ratio. The NPM is not tallied directly, but instead 
is computed from two source correlation matrices that are 

tallied during the Monte Carlo calculation. In this section, 
two different expressions are derived that relate the NPM to 
the correlation matrices. The first such expression was orig-
inally derived by Nease, and has been used to implement the 
CMPM in the MCNP Monte Carlo code.4,5) The second ex-
pression—derived for the first time in this paper—has been 
used in the implementation of the NPMM in the MC21 
code.9) It is shown that the new derivation avoids an ap-
proximation used in the original derivation. 

Implementations of the CMPM and the NPMM to-date 
utilize a rectangular mesh superimposed on the Monte Carlo 
geometry. A discretized representation of the fission source 
is obtained by tallying the neutron production rate due to 

fission in each of the mesh cells. Let  mS  denote the fission 
source vector at the conclusion of fission-iteration cycle m, 
where an element of the vector corresponds to the fission 
source in one of the cells. It is assumed that m is sufficiently 
large that the source vector can be considered a stationary 
random variable. Following Nease and Ueki, we decompose 
the fission source vector as 

   
0

m mN N S S e , (1) 

where N is the number of neutrons per cycle, 0S  is the 

fundamental-mode fission source vector normalized to the 

fundamental-mode eigenvalue, and  me  is a stochastic 
noise vector that represents the deviation of the cycle-m fis-
sion source vector from its expected value.3) Denoting the 
ensemble-averaging process by  , Eq. (1) leads to 

 
0

m N S S S . (2) 

Taking the ensemble average of Eq. (1) and using Eq. (2) 
yields 

 m e 0 . (3)
 

Nease and Ueki show that to lowest order in the noise terms, 
 me  is propagated from cycle to cycle according to 

     1 1
0

m m m  e A e ε , (4) 

where 0A  is the NPM and  1mε  is a vector representing 

the noise introduced at cycle 1m  . This latter quantity has 
the property 

 1m ε 0 . (5) 

In Refs. 3) and 4), covariance matrices are defined in 

terms of the noise vector  me . Expressions are then found 
relating these covariance matrices to the NPM. To-date, 
however, practical implementations of the CMPM and 
NPMM in production Monte Carlo codes have used an al-
ternative methodology which utilizes correlation matrices 

defined in terms of the fission source vector  mS .5) In this 
paper we only consider this latter methodology. 

Multiplying Eq. (4) through by N , adding 0NS  to 
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both sides, and using the property 0 0 A S 0 , it can be 

shown that the equation that governs the propagation of the 
fission source vector from cycle to cycle is4) 

     1 1
0

m m m  S A S η , (6) 

where 

   
0

m mN N η S ε . (7) 

Multiplying Eq. (6) through from the right by  TmS  (where 
‘T’ denotes transpose) and ensemble-averaging results in 

           1 1T T T
0

m m m m m m  S S A S S η S . (8) 

The source correlation matrices are defined as 

   T
0

m m L S S  (9) 

and 

   1 T
1

m m L S S . (10) 

With these definitions, Eq. (8) can be rearranged to obtain an 
expression relating the correlation matrices to the NPM 

      11 T
0 1 0

m m     A L η S L . (11) 

Up to this point, the derivation of the expression for the 
NPM in terms of the source vector is the same as given in 
Ref. 4). In that work, the derivation was continued from this 
point by making the approximation 

   1 T
0

m m η S L . (12) 

Substitution of Eq. (12) into Eq. (11) then produced 

  1

0 1 0
ˆ   A L L I , (13) 

where we have introduced the symbol 0Â to represent this 

approximation to the NPM. This expression for the NPM is 
the one used for the CMPM implementation in the MCNP 
code.4,5) 

We now show that the approximation given by Eq. (12) 
can be avoided. Using Eqs. (1) and (7), we have 

         T
1 1T

0 0
m m m mN N N N   η S S ε S e . (14) 

As shown in Refs. 3) and 4), the noise introduced in one 
cycle is uncorrelated with the accumulated noise term from 
all previous cycles, i.e. 

 1 ( )T 0m m ε e . (15) 

Using Eqs. (2), (3), (5) and (15), Eq. (14) may be simplified 
to 

   1 T Tm m η S SS . (16) 

Note that unlike Eq. (12), this expression does not involve 

any additional approximation beyond those already em-
ployed in arriving at Eq. (4). Substituting Eq. (16) into 
Eq. (11) yields the improved expression for the NPM 

  1T
0 1 0

    A L SS L . (17) 

This expression for the NPM is the one used for the NPMM 
implementation in the MC21 code. Details of that imple-
mentation will be given in Section IV. 

 
III. Equivalence of the Dominance Ratio as Deter-

mined by the CMPM and the NPMM 

In this section, it is shown that given correct and consis-
tent formulations of the NPM, the dominance ratio as 
determined by the CMPM and NPMM algorithms are iden-
tical. As will be shown in the Appendix, however, the 
approximation used to obtain the formulation of the NPM 
given by Eq. (13) introduces extraneous terms that alter the 
eigenvalue spectrum to such an extent that is it not directly 
usable with the NPMM algorithm. The improved formula-
tion given by Eq. (17), however, works equally well with 
either algorithm. 

It has been shown that the dominance ratio given by the 
time-series analysis of the CMPM is equivalent to the ratio 
of two Frobenius inner products, i.e.4) 

 
 

T T
1 1 11 1 1 1

TT
0 1 0 11 1 0

:

:

k

k

 
 



d d L d L d

d L dd d L
, (18) 

where 1d  is the left eigenvector of 0A  corresponding to 

the largest-modulus eigenvaluea λ1, i.e. 

T
0 1 1 1 A d d . (19) 

Substituting Eq. (17) into Eq. (19), after some manipulation 
we obtain 

T
1 1 1 1 1 0   T T Td L d SS d L . (20) 

To deal with the second term on the left side of the above 
equation, we use Eqs. (2) and (19) to get 

 TT T T
1 0 1 0 1 0 0

1 1

1 N
N 

 
d S A d S d A S . (21) 

As discussed in Ref. 3) 0 0 A S 0 , hence from Eq. (21) we 

obtain 

T
1 d S 0 . (22) 

Multiplying both sides of Eq. (20) from the right by 1d  and 

using Eq. (22) we obtain 

T T
1 1 1 1 1 0 1  d L d d L d , (23) 

and hence 

                                                                                                   
a To maintain consistency with earlier work, we use a subscript “1” to denote 
the largest-modulus eigenvalue of the NPM, λ1, but use a subscript “0” to 
denote the largest-modulus eigenvalue of the transport equation, k0. 
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T
1 1 1

1 T
1 0 1


 


d L d

d L d
. (24) 

Comparing Eq. (24) with Eq. (18), we see that  

1
1

0

k

k
  , (25) 

i.e. the largest-modulus eigenvalue of the Monte Carlo esti-
mate of the NPM is identically the dominance ratio that one 
obtains from the CMPM using that same NPM. The impor-
tance of this result is that one may compute the dominance 
ratio simply by using any standard method of finding the 
largest-modulus eigenvalue of 0A , and that the value so 

obtained has the same favorable mesh-size properties as that 
obtained using the CMPM. 

 
IV. Implementation of the NPMM in MC21 

This section provides a few details of how the NPMM 
method for calculating the dominance ratio has been imple-
mented in the MC21 Monte Carlo code.9) Let 0m  denote 

the number of cycles run before the tallying of the elements 
of the correlation matrix is begun. After cycle m 
( 0 1m m  ), the following quantities have been accumu-

lated: 

     

0

T
0

1

ˆ
m

m i i

i m 

 L S S , (26) 

     

0

1 T
1

2

ˆ
m

m i i

i m



 

 L S S , (27) 

and 

   

0 1

ˆ
m

m i

i m 

 S S . (28) 

The cycle-m estimate of the NPM is then computed as 

           1
T0

0 1 0
0 0

1 ˆ ˆˆ ˆ
1

m m m m mm m

m m m m

 
     

A L S S L . (29) 

The largest-modulus eigenvalue of  
0
mA , and hence the 

cycle-m estimate of the dominance ratio, is found using the 
SGEEV subroutine from LAPACK.10) 

The default procedure in MC21 is to make 0m  the same 

as the number of discard cycles used to converge the fission 

source. In this case,  
0
mA  is computed—and the dominance 

ratio estimated—starting with the second non-discarded 
cycle. As will be seen in the next section, however, the 
NPMM seems to provide a reasonable estimate of the do-
minance ratio well before the fission source has converged. 
Thus, like the FMM but unlike the CMPM, the NPMM can 
provide on-the-fly estimation of the dominance ratio during 
the source convergence process. 

V. Results 

1. Slab Problem 
This problem is a one-dimensional (1-D), 200-cm-thick 

slab with vacuum boundary conditions. It assumes isotropic 
scattering and one-group cross sections (provided in Ta-
ble 1). The analytic diffusion theory solution for the 
nth-harmonic eigenvalue is  

f
2

a

; 0, 1,n
n

k n
DB


 
 

 , (30) 

where 

 1
n

n
B

L

 


 , (31) 

is the geometric buckling, 

tr2 0.7104L L     (32) 

is the slab thickness L plus twice the distance to the extrapo-
lated boundary, and tr  is the transport mean free path. For 

the case of isotropic scattering considered here, 1
tr t

    

and   1

t3D
  . Using Eq. (30), one obtains  

0 1.299649k   and 1 1.298596k  , giving a reference do-

minance ratio of 0.999190. An additional reference solution 
was generated using the PARTISN discrete ordinates code 
with 5,000 spatial mesh cells and an S200 quadrature to com-
pute 0k , and then estimating the dominance ratio as 

 3

0k k , where k  is the infinite-medium multiplication 

factor.11,12) This procedure also yields a dominance ratio of 
0.999190. 

This problem was analyzed using MC21 with 20,000 
neutrons per cycle, 8,000 discard cycles and 20,000 active 
cycles. The NPM was calculated during the 20,000 active 
cycles. Table 2 gives the reference dominance ratio, as well 
as the values obtained using the NPMM and the CMPM.4) 
The NPMM and CMPM calculations were run using ten 
equally-spaced mesh intervals across the slab. The values in 
parentheses following the dominance ratio results are 
two-standard-deviation uncertainties in the least-significant 
digits, where the variance is determined using 

Table 1 Macroscopic Cross sections for the slab problem 

Cross section Value (cm−1) 

t  1.00 

s  0.70 

a  0.30 

f  0.15 

f  0.39 

 

Table 2 Dominance ratio using ten mesh intervals for the slab 
problem 

Reference NPMM CMPM4) 
0.9992 0.9990(06) 0.9986(11)
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2
2 1

2
0

1
1

k

M k

 
   

 
, (33) 

with 0M m m   being the number of cycles over which 

the NPM is computed. This formula was derived for the 
CMPM based on a result from time series analysis due to 
Box and Jenkins.4,13) Since—as demonstrated in Sec-
tion III—the NPMM result is identical to the result that one 
would have obtained from the CMPM with the same NPM, 
it follows that the variance of the NPM result should be the 
same as that of the CMPM result and hence the use of 
Eq. (33) is appropriate for both methods. The NPMM result 
agrees well within the statistical uncertainty with both the 
reference value and the CMPM result. Table 3 shows the 
results for six MC21 calculations where the number of mesh 
intervals was varied. Even with just two mesh cells, the 
NPMM result is in agreement with the reference value. 

Figure 1 is a plot of the dominance ratio versus active 
cycle number, along with the 2   band about the final 
value. Convergence is initially very rapid, reaching 
two-significant-figure accuracy within about 200 cycles. To 
attain three-significant-figure accuracy, however, requires 
over 1,300 cycles. 

 

2. Two-Dimensional Checkerboard Problem 
This problem consists of a two-dimensional (2-D), 6×6 

array of two types of square regions arranged in a checker-
board pattern. Vacuum boundary conditions apply to all four 
sides. The problem employs one-group cross sections and 
isotropic scattering. The geometry and cross section data are 
given in Fig. 2. This problem was analyzed with MC21 us-
ing 400 discard cycles and 40,000 active cycles of 80,000 
neutrons each, and a 6×6 mesh. Table 4 compares the do-
minance ratio obtained using the NPMM in MC21 with that 
obtained using the CMPM, a spectral radius analysis of a 
discrete ordinates calculation, and a FMM calculation using 
a highly-resolved 48×48 mesh. Two CMPM results are giv-
en. The first is from a Monte Carlo code used by Nease for 
his PhD thesis.4) The NPM used for that calculation is equiv-
alent to that used by the NPMM in MC21 and given by 
Eq. (17). The other CMPM result is from an MCNP calcula-
tion, and was obtained using the NPM given by Eq. (13). As 
can be seen, the NPMM result agrees with the reference dis-
crete ordinates and fine-mesh FMM results at the 
two-standard-deviation level. Both CMPM results also agree 
with the reference calculations at the two-standard-deviation 
level. Note that although we compare to the discrete ordi-
nates solution, its degree of accuracy is unknown. 
 
3. Large Two-Dimensional Problem 

This problem is a 2-D, 18×18 array of three types of 
square regions with vacuum boundary conditions.6) The 
geometry and cross section data are given in Fig. 3. This 
problem was analyzed using MC21 with 10,000 discard and 
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Fig. 1 Convergence of the dominance ratio for the slab problem

Table 3 Effect of the number of mesh intervals on the domin-
ance ratio for the slab problem 

Number of 
mesh  

intervals 

NPMM  
dominance 

ratio 

Difference 
from 

reference 
solutions 

 2 0.9986(7) −0.0006 
 3 0.9989(6) −0.0003 
 4 0.9989(6) −0.0003 
 5 0.9989(6) −0.0003 
10 0.9990(6) −0.0002 
20 0.9990(6) −0.0002 

 4 cm

4 cm

t    1.00 cm-1 
s    0.70 cm-1

f   0.39 cm-1 

t    1.00 cm-1 
s    0.70 cm-1

f   0.24 cm-1 

Fig. 2 2-D checkerboard problem geometry and nuclear data 

Table 4 Dominance ratio results for the 2-D checkerboard 
problem 

Method Mesh Dominance ratio Difference
from 

discrete 
ordinates

Discrete ordinates  0.9581  
FMM 48×48 0.9574 −0.0007 

CMPM (Nease) 6×6 0.9570(029) −0.0011 
CMPM (MCNP) 6×6 0.9481(101) −0.0100 

NPMM 6×6 0.9596(028) +0.0015 
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40,000 active cycles of 100,000 neutrons each, and a 4×4 
discretization. The dominance ratio results are given in Ta-
ble 5, along with results obtained using the FMM, the 
CMPM as implemented in MCNP, two PARTISN calcula-
tions using a 360×360 mesh and S16 quadrature, and the 
ARMA(2,1) method.6) Both PARTISN calculations esti-
mated the first harmonic eigenvalue using core symmetry, 
with one using a vacuum boundary condition and the other 
an extrapolated zero-flux boundary condition on the symme-
try plane. The FMM results show the strong dependence of 
the accuracy of this method on mesh size. It is possible that 
an even finer mesh than the finest shown here would change 
the result in the third significant digit. Therefore, the FMM 
results do not constitute a reference calculation, but are 
merely suggestive. The CMPM result is only given to three 
significant digits, but is in statistical agreement with the 
NPMM result. Both the ARMA(2,1) and the NPMM results 
are given to four significant digits. Even though they do not 
quite agree to within the combined two-standard-deviation 
uncertainty, they do agree to three significant digits. The 
NPMM result is in good agreement with both PARTISN 
results. 

Figure 4 shows two plots of the dominance ratio estimate 
for this problem as a function of cycle number. In one case, 
the default procedure was used in which computation of the 
NPM and dominance ratio is not begun until the discard 
cycles have been completed and the source is fully con-
verged. Note that in this calculation 10,000 initial cycles 
were discarded to minimize the possibility of 
non-convergence of the source for the purpose of this com-
parison. In typical calculations, such a large number of 
discard cycles is not necessary. In the other case, the com-
putation of the NPM and dominance ratio is begun 
immediately with the second discard cycle. The trajectories 
of the dominance ratio versus cycle number are very similar 
in the two cases, indicating that the NPMM can yield an ac-
curate estimate of the dominance ratio even if the fission 
source is not converged. 
 
4. Hoogenboom-Martin Problem 

The final problem considered is one specified by Hoo-

genboom and Martin, and is an idealized representation of a 
large power reactor core.14) This model consists of 241 fuel 
assemblies surrounded by a 20 cm thick steel vessel with an 
inner radius of 203 cm. Each assembly consists of 17×17 pin 
positions, and is 400 cm high. There is borated water within 
the assemblies, between the assemblies and the reactor ves-
sel, and in the regions 20 cm above and below the core. This 
model was used in a calculation that consisted of 10,000,000 
neutrons per cycle, 1,000 active cycles, and 250 discard 
cycles. Using a 4 4 1   mesh, and beginning the calcula-
tion with the first active cycle, MC21 computes a dominance 
ratio for this model of 0.992(6). To-date no other dominance 
ratio value for this model has been published, so there is no 
other result to compare to. We present this simply as an in-
dication that the method gives a reasonable result for a very 
large, fairly realistic, full-core model using actual nuclear 
data rather than the one-group, isotropic scattering data used 
for the other problems.  The result also provides a value for 
future comparisons. Figure 5 shows the dominance ratio 
estimate versus cycle for this problem. 
 
V. Conclusions 

A new expression for determining the NPM has been de-
rived that eliminates an approximation that has figured in 
some of the previous literature on this topic. A new method 
for computing the dominance ratio in Monte Carlo reactor 
calculations—called the NPMM—has been described. In 
this method, the dominance ratio is computed by finding the 

t  1.00 cm−1

s  0.70 cm−1

a  0.30 cm−1

f  0.24 cm−1

f  0.30 cm−1

f  0.39 cm−1

Table 5 Dominance ratio results for the large 2-D problem 

Method Mesh Dominance ratio
FMM 4×4 0.988 
FMM 9×9 0.993 
FMM 18×18 0.997 

CMPM (MCNP) 2×2 0.998(2) 
PARTISN (vac. b.c.) 360×360 0.99885 

PARTISN (extrap. b.c.) 360×360 0.99846 
ARMA(2,1) Not applicable 0.9993(4) 

NPMM 4×4 0.9985(5) 

Fig. 3 Large 2-D problem geometry and nuclear data 
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Fig. 4 Effect of discarded cycles on the dominance ratio calcu-
lation 



On-the-Fly Monte Carlo Dominance Ratio Calculation Using the Noise Propagation Matrix 755

VOL. 2, OCTOBER 2011

 

 

largest-modulus eigenvalue of the NPM. It is shown that for 
consistent NPMs, the dominance ratio computed using the 
NPMM is identical to that computed by the CMPM. The 
method thus has the desirable characteristic of the CMPM 
that it is accurate even for a very coarse mesh. It has also 
been demonstrated that like the FMM, the NPMM has the 
potential to compute reliable estimates of the dominance 
ratio during the fission source convergence process. 
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Appendix: The Connection between Various For-
mulations of the Noise Propagation Matrix 

In his thesis, Nease derived two alternative formulations 
for the NPM.4) The first was obtained in terms of the discre-
tized fission source noise vector, and is given by 

1
0 1 0

A L L , (A1) 

where 

   T
0

m mL e e , (A2) 

and 

   1 T
1

m mL e e . (A3) 

This formulation involved no approximations beyond those 
inherent in Eq. (4). 

His second derivation was developed to facilitate practical 
implementation in Monte Carlo codes, and used the fission 
source vector itself rather than the noise vector. This deriva-
tion introduced the additional approximation given by 

Eq. (12). Using the symbol 0Â  to distinguish the NPM in 

this formulation of the NPM from that of Eq. (A1), we have 

  1

0 1 0
ˆ   A L L I . (A4) 

A third formulation has been obtained in this paper, and is 
given by Eq. (17). Like the formulation given by Eq. (A1), it 
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Fig. 5 Convergence of the dominance ratio for the Hoogen-
boom-Martin problem  
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involves no additional approximations beyond those used to 
obtain Eq. (4). Like the formulation given by Eq. (A4), 
however, it is given in terms of the fission source vector. For 
the purposes of this Appendix, this formulation is denoted 

0A , and is given by 

  1T
0 1 0

     A L SS L . (A5) 

Since the formulations given by Eqs. (A1) and (A5) were 
both obtained using Eq. (4) without any additional approxi-
mation, they must be equivalent. We will now show this 
equivalence explicitly. Using Eqs. (1), (2), (9), (10), (A2) 
and (A3), we may obtain the following relationships be-
tween the correlation matrices: 

2 T
0 0 0 0N N  L S S L  (A6) 

and 

2 T
1 0 0 1N N  L S S L . (A7) 

Substituting Eqs. (A6) and (A7) into Eq. (A5) and applying 
the Sherman-Morrison formulab yields 

T 1
0 0 0

0 0 T 1
0 0 01

N

N





 
    

S S L
A A I

S L S
. (A8) 

Using 0 0 A S 0  yields 0 0 A A . The NPM used in the 

NPMM described in this work is thus identical to the first 
one derived in Nease’s thesis, but is computed in terms of 

the source vectors rather than the noise vectors. Since it was 
derived from an equation that is accurate to first order in the 
noise terms, the eigenvalue spectrum (and hence the domin-
ance ratio) is thus also accurate to that same order. 

We now turn our attention to the alternative formulation 
from Nease’s thesis. Substituting Eqs. (A6) and (A7) into 
Eq. (A4) and applying the Sherman-Morrison formula yields 

T 1
0 0 0

0 0
T 1
0 0 0

ˆ
1

N




  



S S L
A A I

S L S
, (A9) 

which in the limit of large N becomes 

T 1
0 0 0

0 0 T 1
0 0 0

ˆ


  
S S L

A A I
S L S

. (A10) 

The last two terms on the right-hand side are due to the addi-
tional approximation given by Eq. (12). These terms—which 
are of the same order in the noise terms as is 0A  it-

self—cause the eigenvalue spectrum of 0Â  to differ 

significantly from that of 0A . This formulation is thus un-

suitable for use in the NPMM.  
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