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In this paper a general derivation is given of equations describing the variance of an arbitrary detector response in 

a Monte Carlo simulation and the average number of collisions a particle will suffer until its history ends. The theory 
is validated for a simple slab system using the two-direction transport model and for a two-group infinite system, 
which both allow analytical solutions. Numerical results from the analytical solutions are compared with actual 
Monte Carlo calculations, showing excellent agreement. These analytical solutions demonstrate the possibilities for 
optimizing the weight window settings with respect to variance. Using the average number of collisions as a measure 
for the simulation time a cost function inversely proportional to the usual Figure of Merit is defined, which allows 
optimization with respect to overall efficiency of the Monte Carlo calculation. For practical applications it is outlined 
how the equations for the variance and average number of collisions can be solved using a suitable existing determi-
nistic neutron transport code with adapted number of energy groups and scattering matrices. 
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I. Introduction1 

The Monte Carlo technique is widely recognized as a 
powerful tool for simulating neutron transport. In many 
situations simple analog simulation will not suffice and 
therefore variance reduction and/or efficiency boosting 
schemes are implemented. 

Although ’rules of thumb’ exist for the implementation of 
such non-analog schemes, especially for setting weight 
window parameters like Russian roulette and splitting 
thresholds, a rigorous theoretical basis for these rules of 
thumb is lacking; both for rules regarding the reduction of 
variance and boosting the Figure of Merit (FOM). 

Normally the variance or standard deviation of the result 
of the Monte Carlo calculation is estimated together with the 
desired quantity. However, for a proper choice of weight 
window parameters it is useful to be able to calculate a pri-
ori the variance and FOM for a given choice of weight 
window parameters in order to make an optimum choice. To 
this end in Section II the equations determining the first 
moment (requested quantity) and the second moment (aver-
aged squared value) are derived to obtain the variance of the 
Monte Carlo result. The FOM, or rather its inverse, is ap-
proximated by the product of variance and a function 
describing the average number of collisions during a particle 
history. The equation for the average number of collisions is 
also derived in Section II. Analytical results are obtained for 
a one-group slab system using the two-direction transport 
model and for a two-group infinite system in Section III. 
Numerical results of the analytic formulas and comparison 
with Monte Carlo calculations are shown in Section IV. The 
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numerical solution of the second moment equation with an 
existing transport code and the modifications needed in the 
input to the code are discussed in Section V. 

As the amount of information that can be given in this 
paper is limited, the reader is referred to Reference 1 for 
more details and results. 

 
II. Moments Equations 

1. The Integral Form of the Transport Equation 
The Monte Carlo simulation of neutron or photon trans-

port is governed by sampling of the source S(P)=S(r,E,Ω) 
and successive sampling of the transition kernel 
T(r'→r,E',Ω') to select the next collision point r starting at r' 
and the collision kernel C(r,E'→E,Ω'→Ω) to select the en-
ergy E and direction Ω after scattering. Then the collision 
density ψ(P) is given by the integral transport equation 

1( ) ( ) ( ' ) ( ')P S P K P P P dP '     (1) 

with S1(P) the source of first collisions, given by 

1( ) ( ' , , ) ( ', , ) 'S P T E S E dV  r r Ω r Ω  (2) 

and the full transport kernel K(P'→P) defined by 

( ' )

( ', ' , ' ) ( ' , , ).

K P P

C E E T E

 
  r Ω Ω r r Ω

 (3) 

The non-absorption probability for a particle entering a 
collision at P’ is 

( ') ( ' ") "

( ', ' ", ' ") " ".

P K P P dP

C E E dE dΩ

   

 


 r Ω Ω

 (4) 
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This probability is used in an analog Monte Carlo simulation 
to select a scattering event (instead of capture or absorption) 
or is used as a weight factor to reduce the particle weight in 
case of a non-analog simulation with implicit capture. In the 
following we will omit the dependence of κ on P' in light of 
notational convenience if no confusion is possible. 

The aim of a calculation will be to determine the response 
R of an actual or hypothetical detector, being some average 
over the collision density ψ(P) as follows 

( ) ( )R P P dP    (5) 

with ηψ(P) the averaging function or detector response func-
tion. 

 
2. The Score Probability Equation 

To derive the moment equations, especially for the second 
moment of the estimate of R, we introduce the score prob-
ability function π(P,W,s)ds along the lines of Lux and 
Koblinger,2) but with the modification of Hoogenboom3) as 
the probability of a neutron entering a collision at P with 
statistical weight W to give a total score s in ds. To take into 
account the possibility of splitting and Russian roulette in a 
non-analog simulation we apply a weight window after a 
collision with splitting if the particle weight after collision is 
above the threshold Wsplit and with Russian roulette if the 
particle weight after collision is below the threshold WRR. 
The weight window settings may be space and energy de-
pendent. The Russian roulette and splitting can be arranged 
in different ways with different survival probabilities and 
corresponding particle weights. Here we use a survival 
weight Wsurv after the Russian roulette, independent of the 
particle weight before the Russian roulette and in case of 
splitting a particle is always split in Nsplit particles (Nsplit>1). 
As the particle weight after implicit capture is κ(P)W, we 
have the conditional probability that exactly one particle will 
be alive after application of the weight window 

1

0

( , ) 1

.

split

RR split

RR
surv

W W

z P W W W W

W
W W

W


 

 


  



 (6) 

and the probability z0(P,κW)=1-κW/Wsurv for κW≤WRR to get 
no particle out of the weight window. 

The probability to have Nsplit>1 particles resulting after 
applying the weight window is 

1

( , ) 0

0 .

split

N RR split

RR

W W

z P W W W W

W W


 




  



 (7) 

Then the weight after application of the weight window is 

*( , )

.

split
split

RR s

surv RR

W
W W

N

W P W W W W W

W W W
plit

 

  




 

  (8) 

Normally the ratio between the Russian roulette survival 
weight Wsurv and the threshold WRR as well as the ratio be-
tween the boundaries of the weight windows is a fixed value: 

surv

RR

split

RR

W

W

W

W








 (9) 

with α often a value of 2 and β a value of 4 to 10. 
We can now derive the equation for the score probability 

considering a particle with weight W entering a collision.3) 
The particle will give anyway a contribution to the score of 
Wηψ(P) as ηψ(P) is the scoring function from Eq. (5) for the 
collision density. In a non-analog simulation there will al-
ways be implicit capture, reducing the weight to κW. Then 
the weight window will be applied giving a probability 1-z1 
that no particle will survive and the total score s remains 
Wηψ(P), hence a function δ(s-Wηψ(P)) represents the score in 
case of a terminal collision. In case that one particle comes 
out of the weight window application, it will have a prob-
ability Kn(P→P')=K(P→P')/κ(P) to enter the next collision 
at P'. Then the total score s is a convolution of the former 
δ–function and the score probability at P' with weight 
W*(P,κW). Another mutually exclusive possibility is to have 
Nsplit particles after the weight window application. Then the 
total score is a convolution of the δ–function with the multi-
ple convolution of the score probabilities of all Nsplit particles. 
Hence, 

1

1

*

*
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( , , ) (1 ( , )) ( )

( , ) ( ') ( )

( ', ( , ( ) ), ) '
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
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 

 

 

 






  

  



  

  





 (10) 

with * denoting convolution and  multiple convoluti- 

ons.4) 
1

N

j
 

 
3. Average and Variance 

The first and second moment of the score are defined by 

1

2 2
2

( , ) ( , , )

( , ) ( , , ) .

M P W s s P W s ds

M P W s s P W s ds













 

 




 (11) 
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with the integration starting at –∞ for convenience. 
For application to Eq. (10) we need the following proper-

ties of multiple convolutions4) 

1 2 ...
1

1

( )
N j

NN

f f f j f
j

j

s s f s ds


  


       s  (12) 
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with  such that . )2,1,0(ij 



N

i
ij

1

2

Noting that 

 1( , ) ( , ) *( , )

( ) ,

N splitz P W z P W N W P W

P W

 







  (14) 

we arrive at 

1( , ) ( )

( ) ( ') ( ') '.n

M P W W P

P W K P P P dP



 



 
 (15) 

For the first moment it holds that2) 

1 1( , ) ( , 1) ( )1M P W WM P W WM P    (16) 

and we see that M1 satisfies the adjoint transport equation 

1( ) *( )

( ) ( ') *( ') '.

M P P

P K P P P dP



 

 

 
 (17) 

When we take the average over all particles entering their 
first collision we see 

1 1 1

1

[ ( )] ( ) ( )

( ) *( ) .

E M P S P M P dP

S P P dP R


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
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 (18) 

For the second moment we find 

 
2

2 0

1
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2
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( , ) ( )
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( ') ( ', *( , ( ) ) '
 (19) 
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with 

0 1( ) ( ) 2 ( ) ( )I P P M P P    . (20) 

This is also an adjoint type equation with the arguments 

of the kernel Kn reversed compared to a forward equation 
like Eq. (1), but with a complicated source term including 
the integral term with M1

2 and an additional factor to the 
kernel Kn. The variance in the estimate of R for a particle 
with initial weight Winit can now be obtained from 

22
1 2

( , )
( ) ( ) init

init
init

M P W
Var W S P dP R

W
  . (21) 

For the non-analog simulation without splitting and Rus-
sian roulette, but only implicit capture we can set in Eq. (19) 
zN =0 and z1=1 and obtain 

2
2 0

2

( , ) ( )

1
( ') ( ', ( ) )

ic

ic

M P W W I P

K P P M P P W dP '.




 
 (22) 

As the simulation process at each collision is independent of 
the particle weight, we have in this case 

2 2
2 2( , ) ( , 1) (ic ic ic

2 )M P W W M P W W M P    and 

2 0

2

( ) ( )

( ') ( ')

ic

ic

M P I P

K P P M P dP



  '.
 (23) 

For the fully analog game we always have W=1 and can 
drop the weight dependence. For the derivation of the sec-
ond-moment equation we have to consider that the particle 
history ends with the absorption probability 1-κ and contin-
ues with probability κ. This results in 

2 0 2( ) ( ) ( ') ( ') 'an anM P I P K P P M P dP   . (24) 

Comparing Eq. (24) with Eq. (23) we see that the second 
moment and hence the variance with implicit capture is al-
ways smaller than for the analog simulation. However, using 
only implicit capture without Russian roulette may result in 
long histories with particle weights getting progressively 
smaller, especially in a system with low leakage. The result-
ing increase in CPU time will deteriorate the FOM. As it is 
hardly possible to model the CPU time of a Monte Carlo 
simulation we will use the number of collisions as a substi-
tute. For an alternative see Reference 5. 

 
4. The Number of Collisions 

The score probability equation for the number of colli-
sions for the case with a weight window can be derived 
along the same lines as for the score itself, taking into ac-
count that for a neutron entering a collision the number of 
collisions is 1 if no particle survives the weight window. 
This leads to 

1
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with the score variable s and the convolutions now being 
discrete. The expected number of collisions nc(P,W) for a 
neutron entering a collision at P with weight W is obtained 
by summation over s leading to 

 1( , ) 1 ( , ) ( , )

( ') ( ', *( , ( ) ))

c N

n c

n P W z P W z P W N

K P P n P W P P W dP

 



  

  '.

split  (26) 

For the case of only implicit capture this becomes 

1
( ) 1 ( ') ( ') ' , (27) ic ic

c cn P K P P n P dP


  

c

independent of the initial weight. For analog simulation it 
becomes 

( ) 1 ( ') ( ')an an
cn P K P P n P dP   ' . (28) 

The averaged number of collisions over all particle histo-
ries is obtained from 

1( ) ( ) ( , )c init c initN W S P n P W dP  . (29) 

 
5. Cost Function 

We now proceed with the definition of the cost function 
as a product of variance and number of collisions. 

( ) ( ) ( )init init c initCost W Var W N W . (30) 

The cost function may be interpreted as being proportial to 
the inverse of the Figure of Merit. It may be used to compare 
different simulation implementations and it should be mini-
mized to find optimum weight window parameters. It is 
independent of the computer used to perform the Monte 
Carlo calculation and the programming of the Monte Carlo 
code. 

 
III. Analytical Solutions 

To validate the theory presented in Section II it will be 
useful to apply the theory to a case for which analytical solu-
tions can be obtained. This is hardly possible in general, but 
using the simplified two-direction transport model6) upon 
simple cases, a true Monte Carlo calculation is still possible 
and one can obtain the desired analytical solutions. 

 
1. The Two-Direction Transport Model 

In the two-direction transport model we consider only 
particles moving into the +x or -x direction. Differentiation 
of the integral equations for both directions and combining 
the results leads to a diffusion-type differential equation for 
the scalar flux 

1 ( )
( ) ( ) ( )

( ) a
tr

d d x
x x S x

dx x dx

  


 , (31) 

with the transport cross section as usual defined by 

0tr t s     . (32) 

The boundary conditions at boundary xb can be derived to be 

( )
( )b

tr b

d x
x

dx

   . (33) 

In case of the two-direction model the collision kernel C 
simplifies to 

( ) ' 1
( , ' )

( ) ' 1s

x
x

x

  
  
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



 
 

 
 (34) 

with Σ→ the cross section for scattering into the same direc-
tion as before the collision and Σ← for scattering into the 
opposite direction. Then the mean cosine of the scattering 
angle becomes 

0
s

 


 
 . (35) 

The transition kernel T becomes 

| '|e ( ')
( ' , 1)

0 ( ')

t x x
t x x

T x x
x x






   
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 

 0

0.
  (36) 

For simplicity of notation we will consider in the follow-
ing only the case of isotropic scattering or μ

_
0=0. 

 
2. Homogeneous Slab System with Weight Window 
(1) General quantities 

We consider a homogeneous slab of half-width b with a 
constant source S over the full width of the slab. Then the 
solution for the collision density ( ) ( )tx x    is 

cosh
( ) 1

cosh sinh
t tr

a tr

kx
x S

kb k kb


  
     

, (37) 

with a relaxation length given by 

a trk    . (38) 

Taking a hypothetical detector registering the total flux 
over the slab we have ηψ=1/Σt and 

1
( ) ( )

sinh2
.

cosh sinh

b b

tb b

tr

a tr

R x dx x dx

kbS
kb

k kb k

 
 

 


kb

 
     

 
 (39) 

The first moment of the score is the solution of the adjoint 
equation which reads in our case 

2

2

1 *( )
( ) *( ) ( )a t

tr

d x
x x x

dx 
     


 (40) 

with boundary condition5) 

*
*( ) ( )tr tr

b

d
b b

dx 
  



      (41) 

and solution 
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cosh
*( ) 1

cosh sinh
t s tr

a t tr

kx
x

kb k kb 
  

    





. (42) 

The source of first collisions from Eq. (2) is 

 1( ) 1 e coshtbS x S kx  , (43) 

from which we can verify the detector response according to 
Eq. (18). 
 
(2) Analog simulation and implicit capture 

Transforming the integral equation (24) into a differential 
equation we get 

2
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2
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 (44) 

with solution 

2 0 1 2( ) cosh sinhan an an anM x C C kx C x kx   . (45) 

The solution for the implicit capture case is 

2 0 1

2 2
2

( ) cosh

cosh .

ic ic ic

ic
t s

M x C C kx

C x x

 

  
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Expressions for all coefficients can be found in the Appen-
dix. 

The differential equation for the number of collision nc 
becomes for the analog case 

2

2

( )1
( ) ( )

an
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a c t
tr

d n x
n x x

dx    
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with solution 
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( ) 1

cosh sinh
an t s
c
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kx
n x

kb k kb

  
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. (48) 

The solution for the implicit capture case is 

 2 2 21
( ) 1

2
ic
c t tn x b b x     . (49) 

 
(3) Using weight windows 

The integral equation (19) for the second moment is more 
difficult to solve as M2 in the integral shows up at a different 
weight than at the left hand side. For the following deriva-
tion we assume κWsurv<WRR, which means that it takes only 
one collision for a particle with weight Wsurv to have its 
weight reduced to below the Russian roulette threshold WRR. 
Then it is necessary to solve the equation in steps: 

(1) for the weight W=Wsurv, because then there is no 
splitting and W*=Wsurv, 

(2) for the range κW<WRR, 
(3) for WRR/κ<W<WRR/κ2 

(4) and so on, until the weight becomes above the split-
ting threshold. 

Likewise, Eq. (26) for the number of collisions must be 
solved in steps. 

The solution for W=Wsurv becomes 
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For the range WRR/κm<W<WRR/κm+1 and κW<WRR, we have 
zN =0, z1(κ

m+1W)=κm+1W/Wsurv, W*(κm+1W)=WRR, z1(κ
mW)= 

κmW/Wsurv, and W*(κmW)=κm+1W. With these relations we 
can derive a recursive equation for the second moment and 
the number of collisions using the following integral func-
tions 
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with I0(x) given by Eq. (20) and 
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with ς0=1. The solutions can now be written as 
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and 
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Explicit expressions for the functions Ij(x) and ςj(x) can be 
found in the Appendix. See Reference 1 for the solutions for 
κW>Wsplit when splitting occurs. If the assumption 
κWsurv<WRR is not satisfied and hence two or more collisions 
are necessary to have the particle weight from Wsurv reduced 
to below the Russian roulette threshold, one also has to con-
sider successive weight ranges below Wsurv. 

 
3. Two-Group Infinite System 

Another type of system that can be treated analytically 
and reveals some interesting features is a 2-group infinite 
system. There is no space dependence in this situation, but 
there is a group dependence. Considering only down-scat-
tering from group 1 to group 2, using the first subscript of M 
for the first or second moment, and using a second subscript 
for the group, we have from Eq. (17) 
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which has solutions 
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The solution for the second moment is more complicated 
as scattering from group 1 to group 2 introduces new weight 
range possibilities. Furthermore, the weight window for the 
two groups may be different. To keep matters manageable 
we assume that the boundaries of the weight window for the 
first group differ by a constant factor γ from those of the 
second group, i.e. WRR1=γWRR2, Wsplit1=γWsplit2 and 
Wsurv1=γWsurv2.  

The equations for the second moment and for the number 
of collisions can be written as1) 
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As for the finite slab system solutions can be found start-
ing at W=Wsurv, first for group 2. From the solution for 
W=Wsurv the solution for the range κ2Wsurv<W<Wsurv can be 
obtained. Next, solutions at successive higher ranges for the  
particle weight  can be  1

2 2/ /m m
surv survW W W   

obtained. Finally, all solutions for group 1 can be obtained. 
Complete derivations and solutions can be found in Refer-
ence 1. 

The response R, variance, number of collisions and cost 
function can be expressed as 

1

2 2
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 (60) 

with Sg the source for group g. 
 

IV. Numerical Results 

1. Homogeneous Slab System with Weight Window 
To validate the theory and solutions presented in Section 

III, we calculated the variance and standard deviation as well 
as the average number of collisions and the cost function 
from the above formulas and compared the results with a 
Monte Carlo calculation. To this end we developed a simple 
Monte Carlo program for a slab system with implementation 
of the two-direction transport model and all variance reduc-
tion methods treated in the theory. Table 1 shows the 
parameters used. 

Monte Carlo calculations were performed with N=107 
particle histories to ensure that the Monte Carlo estimate of 
the theoretical variance and number of collisions of a particle 
history was sufficiently accurate. Table 2 shows the results 
from the Monte Carlo calculations and the analytical results 
for an analog simulation and a non-analog simulation with 
implicit capture only. 

From Table 2 we can conclude that there is a very good 
agreement between the analytical and Monte Carlo results 
for all quantities. The table also demonstrates that implicit 
capture reduces the variance, but (without Russian roulette) 
increases the number of collisions and hence the CPU time 
considerably, resulting in a higher cost function and lower 
efficiency, as particle histories only end by escape from the 
(relatively thick) system. 

When applying a weight window we keep the Russian 
roulette threshold WRR fixed and vary the initial weight of the 
particle as well as the parameters α and β according to 
Eq. (9), which together with WRR and Nsplit, determines the 

Table 1 Parameters used in slab calculation 

quantity symbol value 
Total cross section 

Scattering cross section 
Average cosine of scat-

tering angle 
Slab half width 

Non-absorption prob-
ability 

Relaxation length 
RR threshold 

Σt 
Σ
μ
_

0 
s 

 
b 

κ=Σs/Σt 
 

k=√(ΣaΣtr) 
WRR 

1.1 cm-1 
0.5 cm-1 

0 
 

10 cm 
0.4545 cm-1 

 
0.8124 cm-1 

0.5 
 

Table 2 Results for analog simulation and implicit capture (IC) 

Method R Var 
Analog MC 

Analog analytically 
IC MC 

IC analytically 

7.745 10-2 ± 2 10-5 
7.743322725 10-2 

7.7434 10-2 ± 6 10-6 
7.743322725 10-2 

3.0771 10-3 
3.07151277 10-3 

3.4063 10-4 
3.4005285 10-4 

 Nc Cost 

Analog MC 
Analog analytically 

IC MC 
IC analytically 

1.7038 
1.703530999 

51.315 
51.33333335 

5.243 10-3 
5.23241721 10-3 

1.748 10-2 
1.74560465 10-2 
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Fig. 2 Cost function dependence on initial particle weight for 
the infinite system with a detailed view around the minimum at 
Winit =4.5998. 

 

Table 4 Parameters used for the two-group infinite system 

parameter value parameter value 
Σt1 
Σs

11 

Σs
12 

S1 
M11 
κ1 
R 

1 cm-1 

0.2 cm-1 

0.25 cm-1 

0.7 
0.5208333 

0.45 
0.864583 

Σt2 
Σs

22 

Σs
21 

S2 
M12 
κ2 

WRR 

1 cm-1 

0.4 cm-1 

0 cm-1 

0.3 
1.666667 

0.4 
0.5 

 

Fig. 1 Cost function dependence on initial particle weight for 
the slab system with a detailed view around the minimum at 
Winit=5.324 

 
Table 3 Comparison of results for the slab system 

 Optimum weight 
window 

Implicit 
capture 

Analog 

W 
Var 
Nc 

Cost 

5.324 
4.3061 10-4 

3.54589 
1.54624 10-3 

n.a. 
3.4005 10-4 

51.3333 
1.7456 10-2 

n.a. 
4.3061 10-3 

1.70353 
5.23242 10-3 

 

weight window. Numerous computations were performed 
with varying parameters which show that the parameters α, β 
and Nsplit are of marginal influence in the overall cost as long 
as reasonable values are chosen and extreme values avoided. 
We therefore chose α=2, β=9 and Nsplit=2. Monte Carlo re-
sults are obtained from 400 runs with different initial particle 
weights. Figure 1 shows the behavior of the cost function by 
varying initial weight. The discontinuities occur when the 
particle needs an additional collision to reach the Russian 
roulette or splitting threshold. The minimum cost is at the 
discontinuity for an initial weight Winit =5.324 where it takes 
a particle just 3 collisions to arrive at the Russian roulette 
threshold. As the boundaries of the weight window were 
fixed in this calculation, it means that for an initial weight of 
unity the optimum Russian roulette threshold is at 
0.5/5.324=0.0939. Table 3 compares results for the optimum 
weight window with the implicit capture and analog case. It 
is clear that the weight window performs much better in 
terms of cost. 

 
2. Two-Group Infinite System 

For the two-group infinite system we used the parameters 
as specified in Table 4 with the detector response equal to 
the flux in the second group, hence R=ψ2/Σt2. 

Results for the cost function at varying initial particle 

weight were obtained from the analytical results in Section 
III.3 and 200 Monte Carlo runs with 107 neutron histories 
each. 

Figure 2 shows the results for the cost function using the 
following parameters for the weight window: α=2, β=9 and 
the ratio between the weight boundaries of the first and sec-
ond group γ=1. In this case there are many more 
discontinuities due to the different series of weights a parti-
cle can have when scattering in the first or second group and 
the fact that a neutron can change from group 1 to group 2 at 
any collision in group 1. However, the minimum of the cost 
function no longer occurs at a discontinuity but shows a true 
global minimum. The minimum of the cost function (1.3248) 
is much lower than for the analog calculation with a cost 
function value of 3.5094. The case of implicit capture only 
has no meaning here since the variance is zero and the num-
ber of collisions infinite without escape from the system. 

 
V. Numerical Solutions with a Transport Code 

As there are no realistic systems for which analytical so-
lutions of the transport and moment equation can be 
obtained, it is of importance to see whether the moment 
equations can be solved numerically by an existing determi-
nistic transport code. This should be the case for the 
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first-moment equation as it is a normal adjoint equation. 
In order to see how we have to interpret the sec-

ond-moment equation to solve it by a deterministic transport 
code, we need to transform the integral equations (19) and 
(26) to the more usual integro-differential form solved in 
deterministic transport codes. A discrete-ordinates code like 
PARTISN7) solves the adjoint transport equation for an ad-
joint function X*(P) of the form 

*( , , ) ( , ) *( , , )

( , ) *( , , )
t

t

X E E X E

E Y E

  
 

Ω r Ω r r Ω

r r Ω
 (61) 

with Y* the source term including scattering related to X* 
according to 


( , ) *( , , ) *( , , )

( , ', ') *( , ', ') ' '.

t

s

E Y E S E

E E X E dE dΩ

 

   
r r Ω r Ω

r Ω Ω r Ω
 (62) 

Applying an exponential integrating function, Eq. (61) can 
be transformed into8) 

* ( , , ) ( ', , ) *( ', , ) 'X E T E Y E d r Ω r r Ω r Ω V . (63) 

Now we need to write our integral equations for the first 
and second moment and for the number of collisions in the 
form of Eqs. (62) and (63). To illustrate this for the sec-
ond-moment equation (19), we define 

2
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 (64) 

and use for simplicity of notation the following abbreviation 

 1
1( , ) ( ) ( , ) ( , )N splitz P W P z P W z P W N    . (65) 

Then we can rewrite Eq. (19) as 
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As a deterministic transport code solves the transport 
equation in multi-group form, we have to interpret Eq. (66) 
also in multi-group form. Then we can interpret every dis-
crete value of W as representing an additional energy 
subgroup and the appearance of a different weight W*(P,κW) 
in the integral at the right-hand side as scattering from an-
other energy subgroup. Hence, the number of energy groups 
and the artificial scattering matrix to be entered to the trans-
port equation solver must be defined in such a way as 
prescribed by Eq. (66). The transport code gives the function 
Q* as its solution. 

The first moment function M1 is easier to calculate by 

PARTISN as its equation is a true adjoint transport equation 
without weight dependence. Only the correct source term has 
to be entered. The solution for the number of collisions func-
tion needs again special interpretation of its equation. 

The averaged first and second moments are integrals over 
the source of first collisions as given by Eqs. (18) and (21). 
By rewriting these integrals using Eq. (2), we have (for in-
stance ) for the second moment 

2 2
1 2

2

( , )
( ) ( )

*( , )
( ) .

M P W
R W S P d

W
Q P W

S P dP
W
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





P
 (67) 

Hence the averaged moments and the variance can easily be 
calculated once the solution for Q* has been obtained. 

This procedure was applied to the slab problem with 
weight windows. The PARTISN code solved the adjoint 
function Q* as well as analogous functions for the first mo-
ment and the number of collisions. For the first moment a 
run with only one energy group is needed. For the calcula-
tion of Q* one energy group is needed to calculate 
Q*(P,Wsurv). A second energy group is needed to obtain 
Q*(P,Wsurv/κ) which is related to Q*(P,Wsurv). A third energy 
group is used to obtain Q*(P,Wsurv/κ

2), which is related to 
Q*(P,Wsurv/κ), and so on. From Q*(P,Wsurv) the averaged 
squared value <R2(Wsurv)> is obtained. Moreover, from 
<R2(Wsurv)>, also <R2(W)> can be obtained for all values 
W<Wsurv by an algebraic relation as Q*(P,W) can be related 
to Q*(P,Wsurv) by an algebraic relation following from 
Eq. (19) for W= Wsurv. 

Proper application of the input to PARTISN and calcula-
tion of the average second moment from Eq. (67) by simple 
numerical integration over space of the scalar adjoint output 
yielded numerical results for R, Var, and Nc that agreed with 
the analytical results of Section IV.1 at various initial 
weights to four significant digits. 

 
VI. Conclusions and Discussion 

Integral equations have been derived for the second mo-
ment of the detector response estimated by a Monte Carlo 
calculation for a particle entering a collision. Besides the 
cases of analog and implicit capture simulations, the case 
when applying a weight window is considered. The integral 
equations for the expected number of collisions were also 
derived. Integrating these functions multiplied by the source 
of first collisions S1(r) over all space results in the average 
first or second moment of the quantity to be estimated, from 
which the variance in the estimate is obtained. Likewise, the 
average number of collisions is obtained. From these quanti-
ties a cost function is obtained that can be minimized with 
respect to the weight window parameters. 

From the comparison of analytical solutions with Monte 
Carlo calculations for two cases using a simplified particle 
transport model, it is concluded that the theory is correct and 
applicable to Monte Carlo simulations employing a weight 
window. 
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The sample problems also demonstrate the possibility of 
optimizing the weight window parameters, especially the 
setting of the Russian roulette threshold value a priori to the 
Monte Carlo calculation. 

The example two-group problem (for an infinite system) 
opens the possibility for optimization of source biasing. The 
formulas for source biasing are not given here, but can be 
found in Reference 1, along with numerical results. They 
show that the optimum choice of source biasing is close to, 
but not identical to the often used values of the inverse ad-
joint functions. 

As there are only very few cases where analytical solu-
tions can be obtained, it is shown how the derived equation 
for the second moment can be cast into a form suitable for 
solution with an existing transport code. This opens the way 
for optimization studies of weight window parameters a pri-
ori to the Monte Carlo calculation, as the time required by a 
deterministic transport code to solve such cases will be small 
compared to the Monte Carlo calculation. This extension is 
not limited to the two-direction transport model, nor to ho-
mogeneous systems, but can be applied more general to 
heterogeneous system and/or different weight window 
bounds in different regions of a system. The theory of Sec-
tion V can be extended to deal with multigroup problems. In 
that case for each energy group, multiple pseudo groups are 
needed to obtain the required quantities for different weight 
ranges. 

Application to realistic systems and optimization of the 
weight window settings in different regions and energy 
groups will open the way to determine what can be gained in 
the Figure of Merit with respect to well performing variance 
reduction methods like the CADIS methodology.9) 

The solutions of the equations for the first and second 
moment and the expected number of collisions with a deter-
ministic transport code requires the usual approximations 
with respect to the use of multi-energy groups and possibly 
homogenization of complex geometry zones. However, it is 
expected that such deterministic calculations of the variance 
and cost function will be sufficiently accurate (and fast) for 
realistic optimization of weight window parameters in much 
more complex systems than those treated in the demonstra-
tion problems. 

Although not discussed in this paper, the theory derived 
here can be extended to include biasing of the transition and 
collision kernel. Then the results may be used to test theories 
about optimum variance reduction. This already applies with 
the presented theory to the often-postulated statement that 
the optimum value for weight window boundaries is in-
versely proportional to the adjoint function for the relevant 
energy and space region. Including a possible biasing of the 
transport kernels in the theory makes it possible to investi-
gate also other variance reduction methods than those based 
on weight windows. 
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Equation Section  1 
Appendix: Expansion Coefficients for Various 

Functions 

The expressions given in this Appendix apply to the 
two-direction model with isotropic scattering for the slab 
system defined in Section III.2. 

From Eq. (20) we get for the two-direction model with 
M1(x)=ψ*(x) according to Eq. (42) 

 0 1 0 0( ) 2 ( ) coshI x M x C D kx       (A.1) 

with 

2
0

t s
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 (A.2) 

and 
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a t

D
kb k kb
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  
. (A.3) 

From the definition of the functions In(x) according to 
Eq. (52), we obtain the system of differential equations 

2
2

12

( )
( ) ( ) 1n

t n t s n

d I x
I x I x n

dx        (A.4) 

with boundary conditions 

| (n
x b t n

dI
I x b

dx  )   . (A.5) 

With I0(x) from Eq. (A.1) we have 
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with the coefficients given by 
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Then all coefficients can be determined. 

The second moment M2
an(x) for an analog game is given 

by Eq. (45). Its coefficients are The functions ςn(x) obey the same differential equation as 
In(x) but start with ς0(x) =1, from which one obtains 
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with A0=1 and the other coefficients given by 
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For the coefficients Bn,j, Cn,j, En,j and Fn,j, it holds that 
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The coefficients for the second moment for implicit capture 
according to Eq. (46) are 
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and the following recurrent relations (j=1, …, n-1; n>1) hold 
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The second moment when applying Russian roulette 
M2(x,Wsurv) with weight equal to the survival weight is given 
by Eq. (50). Its coefficients are in this case equal to those for 
the analog case: The coefficients Bn,0 and En,0 can be found from the boundary 

conditions of Eq. (A.5) 

 

 

,0

1
1

,
0

1
1

,
0

e

( ) cosh sinh

( )sinh cosh

[

]

tb

n t n
t

n
j j j

n j t t t t
j

n
j j j

n j t t t t
j

B A

B jb b b b b

C jb b b b b













  


     

     









 

2

0 0 02

1 1

2 2 .
2

surv an t

surv an

surv an s t

C C C
k

C C

C C D
k


 


 

   0

 (A.20) 

 (A.12) 


	I. Introduction
	II. Moments Equations
	1. The Integral Form of the Transport Equation
	2. The Score Probability Equation
	3. Average and Variance
	4. The Number of Collisions
	5. Cost Function

	III. Analytical Solutions
	1. The Two-Direction Transport Model
	2. Homogeneous Slab System with Weight Window
	(1) General quantities
	(2) Analog simulation and implicit capture
	(3) Using weight windows

	3. Two-Group Infinite System

	IV. Numerical Results
	1. Homogeneous Slab System with Weight Window
	2. Two-Group Infinite System

	V. Numerical Solutions with a Transport Code
	VI. Conclusions and Discussion
	References

	Appendix: Expansion Coefficients for Various Functions

