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A Monte Carlo Method for Calculation
of the Dynamic Behaviour of Nuclear Reactors
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In safety calculations of nuclear reactors, dynamic calculations are of great interest. This type of calculation is
mainly done by making an approximation and then using a deterministic code to solve the simplified problem. In
this paper a full Monte Carlo method is proposed to perform these calculations on seconds to minutes scale without
approximations.

First the sampling of precursor decay is needed. The decay of precursors plays a crucial role in the dynamics of
nuclear reactors, but the lifetime of a precursor can go up to 102 s. This is much larger than the order of the lifetime of
a prompt neutron (10−4 s) or the order of a prompt neutron chain (10−2 s). Therefore precursors in this simulation are
forced to decay according to a modified pdf. This ensures a small variance in the delayed neutron distribution in time.

The simulation scheme has also been adapted for dynamic Monte Carlo. The simulation is now divided in time steps
and the ancestor of a particle needs to be tracked throughout the simulation for proper variance estimation. After each
time step the system properties can be adjusted.

Finally the dynamic Monte Carlo method is used to calculate the power production in a simple system. The results
agree with a point kinetics calculation of the same problem.

KEYWORDS: Monte Carlo, dynamic, time dependent, precursor, neutron chain, prompt neutron, delayed
neutron, parallel, safety, simulation

I. Introduction

Monte Carlo simulations are widely used for calculating
shielding, eigenvalue and subcritical problems. Although
Monte Carlo calculations are costly, they give a result of
which the accuracy is exactly known and the calculation costs
can be adjusted to meet the required precision.

Nowadays full Monte Carlo codes are only used for the cal-
culation of steady state problems, such as shielding or eigen-
value problems. However, for safety calculations on a nu-
clear reactor the dynamic behaviour of a reactor is important,
for example, the maximum power or temperature reached in
an accident scenario. For the calculation of the dynamic be-
haviour of a nuclear system, deterministic codes exist. These
methods need all kinds of approximations in the problem, for
example homogenisation, diffusion theory and/or steady state
solutions in combination with point kinetics.1) These approx-
imations introduce uncertainty and the size of this uncertainty
is not exactly known, but it is estimated using expensive ver-
ification experiments. These experiments are usually still an
approximation of the real system, this makes it hard to de-
termine the accuracy of the method. Also hybrid stochas-
tic/deterministic methods are developed and in these methods
the shape function is calculated using Monte Carlo, but the
time evolution is still approximated using point kinetics.2–4)

In this paper a full Monte Carlo method is proposed that
can be used to calculate the dynamic behaviour of a nuclear
system. This system may be sub- or super-critical. The

∗Corresponding author, E-mail: B.L.Sjenitzer@TUDelft.nl

method can simulate delayed neutrons as well as prompt neu-
trons and can calculate the power production at any time in-
terval. The main focus of this paper is to demonstrate the
simulation scheme and to show the feasibility of such a calcu-
lation, in contrast to other papers such as Zhitnik et al.,5) who
did not elaborate on the methods used, but mainly focused on
the results achieved.

II. Dynamic Monte Carlo Method

1. Precursors

For the implementation of the dynamic Monte Carlo
method, there are a few challenges that need to be met. The
first challenge is to sample the decay of precursors in such
a way that delayed neutrons are being generated constantly.
The importance of a constant production of delayed neutrons
is shown when comparing the lifetime of a precursor with the
lifetime of a prompt neutron chain.

The lifetime of a precursor can vary from an order10−2 s
up to 102 s. At the end of its lifetime a precursor decays,
producing a neutron. This delayed neutron starts a prompt
neutron chain, which may produce a new precursor. If a sys-
tem is exactly critical, on average one precursor per chain will
be produced. The prompt neutron chain will die out at some
point, but a new chain is started by the delayed neutron that is
produced by the new precursor.

To calculate the average lifetime of a prompt neutron chain,
first the probability that a neutron produces a new prompt neu-
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tron is needed. This is given by:

Pf = keff (1 − β) (1)

Here keff is the effective multiplication factor andβ is the
fraction of delayed neutrons.

If the system is critical (keff = 1) the probability that a
chain of prompt neutrons has a length ofn neutrons is:

P (n) = P
(n−1)
f (1 − Pf ) (2)

If the system is not prompt super critical, the average chain
length can be calculated using:

n =
∞∑

n=1

nP (n) =
1

1 − Pf
(3)

For a critical system withβ = 0.007, the average chain length
becomes 143 prompt neutrons. Now assume that the lifetime
of a neutron is on average10−4 s and therefore the lifetime of
a neutron chain is order10−2 s. This is significantly shorter
than the lifetime of a precursor.

The power production only takes place during the lifetime
of the prompt neutron chain and after a prompt neutron chain
there can be a long time with no power production or any other
tally, until a delayed neutron starts a new chain. This creates
much variance as illustrated inFig. 1. Therefore it is better to
have more often a delayed neutron.
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Fig. 1 The difference in lifetime between precursors and
prompt neutron chains creates variance in the power pro-
duction.

A way to solve this problem is to force precursors to decay
at regular intervals. To do this the neutron produced by the
precursor that is forced to decay must be weighted to ensure a
fair game. If the simulation time is divided in intervals and a
precursor is forced to have a decay in every time interval there
is a new prompt neutron chain in every time interval. This is
described by Legrady and Hoogenboom.6)

The probability that the precursor has a forced decay at
time t inside a time interval betweent1 andt1 + ∆t is chosen
to be uniformly distributed:

p̄(t) =
1

∆t
(4)

The probability of a precursor of delayed groupi having nat-
ural decay is

pi(t) = λie
−λi(t−t0) (5)

When using multiple precursor groups these groups can be
combined and the probability then becomes:

p(t) =
∑ βi

β
λie

−λi(t−t0) (6)

This implies that all precursor groups are combined in a sin-
gle precursor particle and this particle incorporates the decay
probability from all groups. However, it should be noticed
that, because this precursor particle combines the different de-
cay rates, it no longer has a pure exponential decay.

To keep an unbiased game the weight of the resulting decay
must be reduced, so the probability of the forced decay times
the weight equals the probability of a natural decay at that
time. The weight of the delayed neutron becomes:

wn(t) =
p(t)
p̄(t)

= ∆t
∑ βi

β
λie

−λi(t−t0) (7)

Now every precursor will produce a new prompt neutron chain
in every time interval.
Precursor Spatial Distribution

When initializing a system, first a criticality calculation is
done until the source has converged. This is the steady state
neutron distribution and from this distribution the precursor
and prompt neutron distribution can be calculated. The num-
ber of precursors can be calculated using

∂Ci

∂t
= βiνΣfϕ(r, t) − λiCi(r, t) (8)

The number of precursors at a locationr in steady state
then becomes

Ci0(r) =
βi

λi
νΣfϕ(r) (9)

and for all precursor groups together this becomes

C0(r) =
β

λb
νΣfϕ(r) (10)

whereλb is the inverse averagedλ:

λb =
β∑ βi

λi

(11)

The fraction of prompt neutrons at locationr now becomes

n0(r)
n0(r) + C0(r)

=
1
v ϕ(r)

1
v ϕ(r) + β

λb νΣfϕ(r)
=

1
1 + β

λb vνΣf

(12)
Herev is the neutron speed.
Precursor Time Distribution

With exponential decay a particle has no age. There is al-
ways the same probability that a particle has its next decay,
no matter what time it has lived before. In this case however
as stated before a combined precursor particle does not have
pure exponential decay.
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The precursors from different groups decay with their own
decay constant. Therefore the importance of a precursor group
in the combined particle varies over time:

Ci(t)
C(t)

=
βi

β e−λit∑
j

βj

β e−λjt
(13)

When the particle is created,t = 0, the fraction per precursor
group is simplyβi

β . The time evolution of the importance per
groups is shown inFig. 2.
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Fig. 2 The ratio between the precursors groups in a combined
precursor particle. All groups together add up to 1, but over
time different precursor groups are most important.

In a stationary case, the fraction of precursors per group
remains the same, this number can be calculated combining
Eqs. (9) and (10):

Ci0

C0
=

βi

β

λb

λi
(14)

To achieve this in a Monte Carlo simulation the combined
precursor particles should be started with an age between−∞
and 0. This way the ratios between the different precursor
groups are correct.

Now the effective weight of the precursor is altered since it
has already had a decay probability beforet = 0. The effec-
tive weight can be calculated by subtracting the decay prob-
ability between the birth of the particle att0 and the starting
time t = 0:

wprec,0 = 1−
∫ 0

t0

∑ βi

β
λie

−λi(t−t0)dt =
∑ βi

β
eλit0 (15)

Heret0 < 0 and ∑
all precursors

wprec,0 = C0 (16)

2. Calculation Scheme
Monte Carlo codes that are now used, are made for calcu-

lating steady-state problems. In a dynamic problem, however,
the system can change in time. Not only the system properties
change, such as temperature and materials, also the neutron

flux will vary. For a Monte Carlo code to cope with the new
system, the calculation scheme needs to be adapted.

To ensure that the Monte Carlo method can adapt to its
changing environment, the simulation is split in time inter-
vals. The size of these time steps can be chosen freely, but all
precursors are forced to have a decay in every time step. If a
particle crosses the time boundary of a time step, it is stored
for the next time interval.

After each time interval the system properties can be ad-
justed, for example via coupling with a thermohydraulics
code. In this case the dynamic Monte Carlo code outputs a
power profile to the thermohydraulics code and the thermohy-
draulics code then calculates a new temperature profile. Then
the Monte Carlo code continues with the next time interval,
taking into account the cross sections at the new temperatures.
Parallel Calculations

To use this calculation scheme also in parallel, the results
should be independent from the number of processors used.
To do this, the random numbers used need to be the same with
any number of processors. This is done by assigning every
particle with a number and generate a seed depending on this
number. In the dynamic Monte Carlo scheme a large number
of new particles can be produced, but it is unknown what the
number of new particles is. A processor does not know what
the number of newly produced particles is on another proces-
sor, so it is impossible to assign a particle number to these
particles. Therefore a newly produced particle needs to con-
tinue with the random number sequence of the parent particle
to ensure that the same random numbers are used independent
of the number of processors.

At the beginning of a time interval all particles get a
new particle number from which a random seed is produced.
Then the particles are distributed over the available proces-
sors together with the particle numbers. Next, all processors
will simulate particles and all their progeny and if a particle
reaches the end of the time interval it will be stored. When
all particles are finished the stored particles are returned to the
master process, which will combine the stored particles in the
right order and assign the particles a new seed and redistribute
them over the processors. This is shown inFig. 3.
Tallies

Tallying in a dynamic calculation is also different from tal-
lying in a steady-state calculation; in a steady-state calcula-
tion there is no explicit time-factor. To calculate a tally with a
time factor, such as flux or power production a trick is needed.
A source neutron can be considered as a neutron per second.
This introduces a time dimension into the equation.

For a dynamic calculation this is not needed. There is an
explicit time factor and the tallying becomes more straight for-
ward. The total amount of neutrons or energy deposited per
time interval can be calculated.

Another difference is the normalisation of the results. In a
time-independent calculation the results are normalised to one
source neutron per second. In a criticality calculation this is a
normalisation to the number of neutrons in a cycle. For a dy-
namic calculation, however, the results need to be normalised
to the total neutron weight at the beginning of the first time
interval.
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Fig. 3 In a parallel calculation, the master processor dis-
tributes the N particles over all P processors. These proces-
sors simulate the particles, generating M new particles for
the next time step. These particles are sent back to the mas-
ter processor and the master sorts them by ancestry. Then
the particles are assigned a new number for the next time
step.

Also to calculate the variance in the tally, the original neu-
tron needs to be known. The time intervals are not statistically
independent, but there is a covariance between the time inter-
vals. Therefore calculating the variance per particle in a time
interval would underestimate the actual variance. Instead the
contribution per original neutron needs to be tallied including
all its progeny and the variance per original neutron must be
calculated.

3. Variance Reduction
This new calculating structure requires new variance reduc-

tion techniques. The number of neutrons can increase or de-
crease rapidly in a dynamic calculation and prompt neutron
chains play an important role in this type of calculation.

One of the new variance reduction techniques is the sam-
pling of the precursor decay as described in Sect.1 The pre-
cursors are forced to produce a delayed neutron in every time
interval ensuring low variance in the tallies per time interval.
The average weight of the resulting neutrons is best to be kept
around the average weight of the neutrons present. This can
be achieved by increasing the weight of the precursors using
Russian roulette.
Adjusted Weight Windows

In the dynamic Monte Carlo scheme it is also possible to
adjust the weight windows after each time interval. This way
the simulation can adjust to varying circumstances. For exam-
ple, if the neutron flux increases the weight windows can be
set at higher thresholds making the calculation cost similar for
all time intervals.

Also when a particle is stored at a time boundary, Russian
roulette is applied which gives all surviving particles the same
weight. This includes Russian roulette on precursors, so the
expected weight of the delayed neutrons is also the same. Now
the starting weight of all particles in a time interval is similar,
reducing the variance.
Prompt Neutron Chain

When there is variance in the prompt neutron chain length
this will also increase the variance in the tallies, since the
prompt neutron chains will, in most cases, stay in one time
interval. Therefore variance in the chain length, creates vari-
ance in the number of neutrons and thus in the scores.

To calculate the variance in chain length the average
squared chain length is needed:

n2 =
∞∑

n=1

n2P (n) =
Pf + 1

(Pf − 1)2
(17)

Combining this with Eq.(3) the variance can be calculated.

σ2 = n2 − n2 =
Pf

(Pf − 1)2
(18)

Now if Pf → 1 the variance becomes infinite and it is even
worse when considering the fact that a neutron can also pro-
duce more than one new neutron.
Implicit Fission

A method to reduce the variance in the prompt neutron
chains is to use implicit fission. This technique is similar to
implicit capture, but instead of always having a next scattering
event, a particle always produces a new fission neutron. The
weight of this neutron is equal to the probability of produc-
ing a new fission neutron. Together with implicit capture this
implies that there are two particles to continue after each col-
lision. The big increase in particle numbers is compensated
by using Russian roulette on particles that have too small im-
portance.

III. Numerical Example

This is very nice in theory, but does it work in practice?
To demonstrate the dynamic Monte Carlo scheme a simple
sample problem has been set up. In this problem there is a
small rectangular box of fissile material. The box is 10 by
12 by 24 centimetre and is placed in vacuum. The system
properties are given inTable 1. The system has one energy
group and the neutrons have a speed of2.2× 104 cm/s. There
are six precursor groups; the properties of the precursors are
given inTable 2.

Now the system is started and after ten seconds there is
a reactivity insertion:Σa of the system is decreased from
0.5882 cm−1 to 0.5870 cm−1. After a prompt jump the
neutron population will start to grow exponentially. Then at
t = 40 s the system is returned to the critical state and after
a negative prompt jump the system will return to a new stable
state.

The simulation is done with1 × 106 particles and the time
interval is100ms. The Russian roulette threshold is set at 0.25
times the average neutron weight and the survival weight is set
at 2 times the Russian roulette threshold.
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Fig. 4 A critical system has a reactivity insertion at t=10 s. After a prompt jump the power starts to increase
further, until the reactivity is set back to 0 at t=40 s. Now the system returns to a new stable state. The
dynamic Monte Carlo simulation agrees with the point-kinetics analysis of the system.

Table 1 Material properties that have been used in the test
problem. The box is made out of a homogeneous material

Material properties

Σt = 1 cm−1

Σf = 0.25 cm−1

Σs = 0.4118 cm−1

ν = 2.5
β = 0.00685

Table 2 The precursors are divided in six families, here the
fractions and decay constants per precursor familyi are
given. Also the total delayed fraction and average decay
constant are shown.

Group λ (s−1) β

1 0.0127 0.00026
2 0.0317 0.001459
3 0.1156 0.001288
4 0.311 0.002788
5 1.4 0.000877
6 3.87 0.000178

av/tot 0.0784 0.00685

To verify the results produced by the Dynamic Monte Carlo
code, the same problem has been calculated using a point ki-
netics code. The results are plotted inFig. 4 and the results
agree perfectly with each other.

IV. Summary and Further work

In this paper a method has been proposed to do a full Monte
Carlo simulation on a dynamic system. To incorporate the
effect of delayed neutrons in the model, without creating large
variance, precursors are forced to produce a delayed neutron
at regular intervals.

Also the simulation scheme has been adapted for a system
that can change in time. This scheme can be seen as a hybrid
between a steady-state shielding calculation and a criticality
calculation. Instead of cycles, this simulation is divided in
time intervals. After each time interval the system properties
and the variance reduction can be adjusted.

In a dynamic Monte Carlo simulation there is also a large
variance in the length of the prompt neutron chains. To re-
duce this variance implicit fission has been applied. Implicit
fission works similar to implicit capture and creates a new fis-
sion neutron at every collision. This technique reduces the
variance, but the calculation time increases.

The scheme has been demonstrated in a test case and the
Monte Carlo method produces the same results as a point ki-
netics calculation. There is still some variance visible in the
dynamic Monte Carlo solution, this is mainly due to the vari-
ance in the prompt-neutron chain length. Although a few tech-
niques have been used to reduce this variance, more research
is needed on this topic.
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