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ARTICLE

A Monte Carlo Method for Calculation
of the Dynamic Behaviour of Nuclear Reactors

Bart L. SJENITZER and J. Eduard HOOGENBOOM

Delft University of Technology, Delft, The Netherlands

In safety calculations of nuclear reactors, dynamic calculations are of great interest. This type of calculation is
mainly done by making an approximation and then using a deterministic code to solve the simplified problem. In
this paper a full Monte Carlo method is proposed to perform these calculations on seconds to minutes scale without
approximations.

First the sampling of precursor decay is needed. The decay of precursors plays a crucial role in the dynamics of
nuclear reactors, but the lifetime of a precursor can go up ts1This is much larger than the order of the lifetime of
a prompt neutron (10" s) or the order of a prompt neutron chain {£0s). Therefore precursors in this simulation are
forced to decay according to a modified pdf. This ensures a small variance in the delayed neutron distribution in time.

The simulation scheme has also been adapted for dynamic Monte Carlo. The simulation is now divided in time steps
and the ancestor of a particle needs to be tracked throughout the simulation for proper variance estimation. After each
time step the system properties can be adjusted.

Finally the dynamic Monte Carlo method is used to calculate the power production in a simple system. The results
agree with a point kinetics calculation of the same problem.
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I. Introduction method can simulate delayed neutrons as well as prompt neu-

trons and can calculate the power production at any time in-

Monte Carlo simulations are widely used for calculatin ) ) :
S ) . erval. The main focus of this paper is to demonstrate the
shielding, eigenvalue and subcritical problems. Although: . I
imulation scheme and to show the feasibility of such a calcu-

M I Iculati ly, th i I o o
onte Carlo calculations are costly, they give a result Okatlon, in contrast to other papers such as Zhitnik eYalho

can be adjusted to meet the required precision. dsld not elabora_te on the methods used, but mainly focused on
he results achieved.

Nowadays full Monte Carlo codes are only used for the caf—
culation of steady state problems, such as shielding or eige|r|1—
value problems. However, for safety calculations on a nu-’
clear reactor the dynamic behaviour of a reactor is importanf, precyrsors
for example, the maximum power or temperature reached in
an accident scenario. For the calculation of the dynamic be- For the implementation of the dynamic Monte Carlo
haviour of a nuclear system, deterministic codes exist. Thegeethod, there are a few challenges that need to be met. The
methods need all kinds of approximations in the problem, fdist challenge is to sample the decay of precursors in such
example homogenisation, diffusion theory and/or steady staleway that delayed neutrons are being generated constantly.
solutions in combination with point kinetids These approx- The importance of a constant production of delayed neutrons
imations introduce uncertainty and the size of this uncertaini§ Shown when comparing the lifetime of a precursor with the
is not exactly known, but it is estimated using expensive vetfetime of a prompt neutron chain.
ification experiments. These experiments are usually still an The lifetime of a precursor can vary from an ordér? s
approximation of the real system, this makes it hard to dewmp to 102 s. At the end of its lifetime a precursor decays,
termine the accuracy of the method. Also hybrid stochagroducing a neutron. This delayed neutron starts a prompt
tic/deterministic methods are developed and in these methagisutron chain, which may produce a new precursor. If a sys-
the shape function is calculated using Monte Carlo, but them is exactly critical, on average one precursor per chain will
time evolution is still approximated using point kinetfc$. be produced. The prompt neutron chain will die out at some

In this paper a full Monte Carlo method is proposed thapoint, but a new chain is started by the delayed neutron that is
can be used to calculate the dynamic behaviour of a nucleggoduced by the new precursor.
system. This system may be sub- or super-critical. The

Dynamic Monte Carlo Method

To calculate the average lifetime of a prompt neutron chain,
*Corresponding author, E-mail: B.L.Sjenitzer@TUDelft.nl first the probability that a neutron produces a new prompt neu-
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tron is needed. This is given by: The probability of a precursor of delayed groiupaving nat-
ural decay is
Py =keg(1—p) ) pi(t) = N\ Pilt—to) (5)
Here kg is the effective multiplication factor and is the When using multiple precursor groups these groups can be
fraction of delayed neutrons. combined and the probability then becomes:
If the system is critical K.z = 1) the probability that a

chain of prompt neutrons has a lengthrofieutrons is: iy g (—

p p g p(t) — Z %/\ie i (t—to) (6)

P(n) = P{""(1 - Py) )

. - _This implies that all precursor groups are combined in a sin-
If the system is not prompt super critical, the average chaij\e precursor particle and this particle incorporates the decay

length can be calculated using: probability from all groups. However, it should be noticed
0o 1 that, because this precursor particle combines the different de-
= Z nP(n) = (3) cayrates, it no longer has a pure exponential decay.
n=1 1- Py To keep an unbiased game the weight of the resulting decay

must be reduced, so the probability of the forced decay times

For a critical system witl¥ = 0.007, the average chain length ) .
becomes 143 prompt neutrons. Now assume that the Iifetint{(]ae weight equals the probability of a natural decay at that

of a neutron is on averag®—* s and therefore the lifetime of tme. The weight of the delayed neutron becomes:

a neutron chain is orddi0—2 s. This is significantly shorter p(t) B:

than the lifetime of a precursor. Wy (t) = O ALY E&'e—x‘(t_to) (7)

The power production only takes place during the lifetime P

of the prompt neutron chain and after a prompt neutron chailow every precursor will produce a new prompt neutron chain

there can be a long time with no power production or any othé# every time interval.

tally, until a delayed neutron starts a new chain. This creat@ecursor Spatial Distribution

much variance as illustrated Fig. 1. Therefore itis betterto  When initializing a system, first a criticality calculation is

have more often a delayed neutron. done until the source has converged. This is the steady state
neutron distribution and from this distribution the precursor

L1005 and prompt neutron distribution can be calculated. The num-

g ber of precursors can be calculated using
| T G i *
S | | | |
- oC;
: | o 5 = PwSro(r.t) = NCi(r,t) (®)
t t t t |
g | o : 1 §! The number of precursors at a locatierin steady state
g E\ g g I B th
2 28 2 5, en becomes
g, E\ g, 2 [ g Bi
g1 g g g g Cio(r) = YVEfﬁb(r) 9)
- | [ | Q
gg ‘ ‘ : : and for all precursor groups together this becomes
-2 8
& Co(r) = FVEJC(JS(I‘) (10)

-
~ 10 ms

Time
where\’ is the inverse averaged
Fig. 1 The difference in lifetime between precursors and
prompt neutron chains creates variance in the power pro- A\ — i (11)
duction. P

A way to solve this problem is to force precursors to deca¥he fraction of prompt neutrons at locatiomow becomes
at regular intervals. To do this the neutron produced by the

precursor that is forced to decay must be weighted to ensurea  ng(r) Lo(r) 1

fair game. If the simulation time is divided in intervals and a n(r) + Cy(r) - %¢(I‘) + %uEqu(r) - 1+ %sz
precursor is forced to have a decay in every time interval there (12)
is @ new prompt neutron chain in every time interval. This i${erev is the neutron speed.

described by Legrady and Hoogenbo8im. Precursor Time Distribution

~ The probability that the precursor has a forced decay at with exponential decay a particle has no age. There is al-
time¢ inside a time interval between andt, + At is chosen \ays the same probability that a particle has its next decay,

to be uniformly distributed: no matter what time it has lived before. In this case however
1 as stated before a combined precursor particle does not have
p(t) = +; (4)  pure exponential decay.
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The precursors from different groups decay with their owflux will vary. For a Monte Carlo code to cope with the new
decay constant. Therefore the importance of a precursor grosystem, the calculation scheme needs to be adapted.

in the combined particle varies over time: To ensure that the Monte Carlo method can adapt to its
Bi it changing environment, the simulation is split in time inter-
Ci(t) Be (13) vals. The size of these time steps can be chosen freely, but all

ct) Z_j %e—xjt precursors are forced to have a decay in every time step. If a
particle crosses the time boundary of a time step, it is stored
When the particle is createtl= 0, the fraction per precursor for the next time interval.
group is Simply%. The time evolution of the importance per  After each time interval the system properties can be ad-
groups is shown iffrig. 2. justed, for example via coupling with a thermohydraulics
code. In this case the dynamic Monte Carlo code outputs a

; ‘ ‘ power profile to the thermohydraulics code and the thermohy-

ool| 001278 | draulics code then calculates a new temperature profile. Then
——2=003175"" the Monte Carlo code continues with the next time interval,

08| 0115657 | taking into account the cross sections at the new temperatures.

o7} :i?i;;zz: ] Parallel Calculations

06y 223870051 To use this calculation scheme also in parallel, the results

should be independent from the number of processors used.
To do this, the random numbers used need to be the same with
any number of processors. This is done by assigning every
particle with a number and generate a seed depending on this
number. In the dynamic Monte Carlo scheme a large number

of new particles can be produced, but it is unknown what the
e e e T number of new particles is. A processor does not know what

fime (<) the number of newly produced particles is on another proces-

sor, so it is impossible to assign a particle number to these

particles. Therefore a newly produced particle needs to con-

Fig. 2 The ratio between the precursors groups in a combingghue with the random number sequence of the parent particle

precursor particle. All groups together add up to 1, but ovap ensure that the same random numbers are used independent
time different precursor groups are most important. of the number of processors.
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At the beginning of a time interval all particles get a

In a stationary case, the fraction of precursors per groypsy particle number from which a random seed is produced.
remains the same, this number can be calculated combinifge, the particles are distributed over the available proces-

Egs. @) and (L0): , sors together with the particle numbers. Next, all processors
Ci - Bi A (14) will simulate particles and all their progeny and if a particle
Co BN reaches the end of the time interval it will be stored. When

To achieve this in a Monte Carlo simulation the combineall particles are finished the stored particles are returned to the
precursor particles should be started with an age between master process, which will combine the stored particles in the
and0. This way the ratios between the different precursofight order and assign the particles a new seed and redistribute

groups are correct. them over the processors. This is showirig. 3.
Now the effective weight of the precursor is altered since itallies
has already had a decay probability before 0. The effec- Tallying in a dynamic calculation is also different from tal-

tive weight can be calculated by subtracting the decay prolying in a steady-state calculation; in a steady-state calcula-
ability between the birth of the particle af and the starting tion there is no explicit time-factor. To calculate a tally with a
timet = 0: time factor, such as flux or power production a trick is needed.
0 A source neutron can be considered as a neutron per second.
Wprego = 1 _/ Z @Aie—ki(t—to)dt = Z @e*ito (15) This introduces a time dimension into the equation.
to p p For a dynamic calculation this is not needed. There is an

Heret, < 0 and explicit time factor and the tallying becomes more straight for-
ward. The total amount of neutrons or energy deposited per
Z Wpreco = Co (16) time interval can be calculated.
all precursors Another difference is the normalisation of the results. In a
time-independent calculation the results are normalised to one
2. Calculation Scheme source neutron per second. In a criticality calculation this is a

Monte Carlo codes that are now used, are made for calcnermalisation to the number of neutrons in a cycle. For a dy-
lating steady-state problems. In a dynamic problem, howeveramic calculation, however, the results need to be normalised
the system can change in time. Not only the system propertigs the total neutron weight at the beginning of the first time
change, such as temperature and materials, also the neutirderval.
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Also when a particle is stored at a time boundary, Russian

() . roulette is applied which gives all surviving particles the same
: weight. This includes Russian roulette on precursors, so the
- = ! e expected weight of the delayed neutrons is also the same. Now
- . % : e the starting weight of all particles in a time interval is similar,
3 \Proc 1) (Proc 1) 5 o3 . ;
pr— i reducing the variance.
Prompt Neutron Chain
:D - :D PE :D :D When there is variance in the prompt neutron chain length
e = 2 this will also increase the variance in the tallies, since the
N2 Proc... N-2 N+ . . . . .
: % ) " @ N M-2 prompt neutron chains will, in most cases, stay in one time
N-1 — ) — N1 o interval. Therefore variance in the chain length, creates vari-
N - | N N+M ance in the number of neutrons and thus in the scores.
Master Prfcp Tt Master Master To calculate the variance in chain length the average
- \Proc P) \Proc P) o) ) : .
squared chain length is needed:
1 2 3 4
Distribute particles Processing Collect stored | | Assign new o)
over processors particles and particles and numbers -3 2 Pf —|— 1
progeny, storing sort them to particles ne = Z n P(n) = YRV (17)
particles that by ancestor (Pf - 1)
cross time boundary n=1
Combining this with EqJ) the variance can be calculated.
— P
. . . ol=n2-—ml=_—"J _ (18)
Fig. 3 In a parallel calculation, the master processor dis- Py —1)2
f

tributes the N particles over all P processors. These proces- o

sors simulate the particles, generating M new particles fé¥ow if Pr — 1 the variance becomes infinite and it is even
the next time step. These particles are sent back to the m¥4rse when considering the fact that a neutron can also pro-
ter processor and the master sorts them by ancestry. TH&#ce more than one new neutron.

the particles are assigned a new number for the next tinf@plicit Fission _ _
step. A method to reduce the variance in the prompt neutron

chains is to use implicit fission. This technique is similar to
implicit capture, but instead of always having a next scattering
Also to calculate the variance in the tally, the original neuevent, a particle always produces a new fission neutron. The
tron needs to be known. The time intervals are not statisticallyeight of this neutron is equal to the probability of produc-
independent, but there is a covariance between the time intég a new fission neutron. Together with implicit capture this
vals. Therefore calculating the variance per particle in a timenplies that there are two particles to continue after each col-
interval would underestimate the actual variance. Instead tkision. The big increase in particle numbers is compensated
contribution per original neutron needs to be tallied includingy using Russian roulette on particles that have too small im-
all its progeny and the variance per original neutron must hgortance.

calculated. ]
[ll. Numerical Example

3. Variance Reduction This is very nice in theory, but does it work in practice?
This new calculating structure requires new variance reduge demonstrate the dynamic Monte Carlo scheme a simple
tion techniques. The number of neutrons can increase or d&mple problem has been set up. In this problem there is a
crease rapidly in a dynamic calculation and prompt neutragmall rectangular box of fissile material. The box is 10 by
chains play an important role in this type of calculation. 12 by 24 centimetre and is placed in vacuum. The system
One of the new variance reduction techniques is the sarproperties are given ifiable 1. The system has one energy
pling of the precursor decay as described in Skdthe pre- group and the neutrons have a spee.pfx 10* cm/s. There
cursors are forced to produce a delayed neutron in every tiraee six precursor groups; the properties of the precursors are
interval ensuring low variance in the tallies per time intervalgiven inTable 2.
The average weight of the resulting neutrons is best to be keptNow the system is started and after ten seconds there is
around the average weight of the neutrons present. This carreactivity insertion: X, of the system is decreased from
be achieved by increasing the weight of the precursors usi@gs882 cnt! to 0.5870 cnv!l. After a prompt jump the
Russian roulette. neutron population will start to grow exponentially. Then at
Adjusted Weight Windows t = 40 s the system is returned to the critical state and after
In the dynamic Monte Carlo scheme it is also possible ta negative prompt jump the system will return to a new stable
adjust the weight windows after each time interval. This wagtate.
the simulation can adjust to varying circumstances. For exam- The simulation is done with x 10° particles and the time
ple, if the neutron flux increases the weight windows can biaterval is100ms. The Russian roulette threshold is set at 0.25
set at higher thresholds making the calculation cost similar féimes the average neutron weight and the survival weight is set
all time intervals. at 2 times the Russian roulette threshold.
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Fig. 4 A critical system has a reactivity insertion at t=10 s. After a prompt jump the power starts to increase
further, until the reactivity is set back to 0 at t=40 s. Now the system returns to a new stable state. The
dynamic Monte Carlo simulation agrees with the point-kinetics analysis of the system.

. . . IV. Summary and Further work
Table 1 Material properties that have been used in the test y

problem. The box is made out of a homogeneous material In this paper a method has been proposed to do a full Monte
Carlo simulation on a dynamic system. To incorporate the
effect of delayed neutrons in the model, without creating large

Material properties

¥, =1cm! variance, precursors are forced to produce a delayed neutron

Y;=025cn! at regular intervals.

5., =0.4118 e Also the simulation scheme has been adapted for a system
v=25 that can change in time. This scheme can be seen as a hybrid
4 =0.00685 between a steady-state shielding calculation and a criticality

calculation. Instead of cycles, this simulation is divided in
time intervals. After each time interval the system properties

Table 2 The precursors are divided in six families, here th@nd the variance reduction can be adjusted.

fractions and decay constants per precursor famigre I_n a dy_namic Monte Carlo simulation there is a_lso a large
given. Also the total delayed fraction and average deca@riance in the length of the prompt neutron chains. To re-
constant are shown. duce this variance implicit fission has been applied. Implicit

fission works similar to implicit capture and creates a new fis-

—1
Group A(s™) s sion neutron at every collision. This technique reduces the

1 0.0127 0.00026 variance, but the calculation time increases.

2 0.0317 0.001459 The scheme has been demonstrated in a test case and the

3 0.1156 0.001288 Monte Carlo method produces the same results as a point ki-

4 0.311 0.002788 netics calculation. There is still some variance visible in the

5 1.4 0.000877 dynamic Monte Carlo solution, this is mainly due to the vari-

6 3.87 0.000178 ance in the prompt-neutron chain length. Although a few tech-
av/tot 0.0784 0.00685 niques have been used to reduce this variance, more research

is needed on this topic.
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