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For current supercomputer systems, multicore and multisocket processors are required in order to build a system, and
choice of interconnection is essential. In addition, for effective development of new code, high-performance, scalable,
and reliable numerical software is key. ScaLAPACK and PETSc are software developed for distributed memory parallel
computer systems. Real computation requires software that is highly tuned for implementation on new architectures,
such as many-core processors.

In the present study, we introduce a high-performance, highly scalable eigenvalue solver with the goal of realiz-
ing the K-computer system, which is a next-generation supercomputer system. We have developed two versions of
this eigenvalue solver, namely, the standard version (eigen_s) and an enhanced-performance version (eigen_sx), both
of which were developed on the T2K cluster system housed at the University of Tokyo. Eigen_s uses conventional
algorithms, such as Householder tridiagonalization, the divide and conquer (DC) algorithm, and the Householder back-
transformation. These algorithms are carefully implemented using a blocking technique and flexible two-dimensional
data-distribution in order to reduce the overhead of memory traffic and data transfer, respectively. Eigen_s performs
excellently on the T2K system with 4,096 cores (theoretical peak: 37.6 TFLOPS) and exhibits fine performance
(3.0 TFLOPS) with a 200,000-dimensional matrix. The enhanced version, eigen_sx, uses more advanced algorithms,
such as the narrow-band reduction algorithm, DC for band matrices, and the block Householder back-transformation
with WY- representation. Even though this version is still in the test stage, eigen_sxhas realized 4.7 TFLOPS with a
200,000-dimensional matrix.

KEYWORDS: eigenvalue solver, high-performance computing, scalable performance, T2K supercomputer
system, K-computer system

I. Introduction

In 2008, Roadrunner reached PFLOPS, and we achieved
peta-scale computing power.1) However, for a number of rea-
sons, high-performance computing is difficult to achieve.

Peta-scale systems usually have more than 100,000 com-
puting cores and an interconnected multi-socket, multi-core
architecture. Each computing core is a general-purpose
processor-unit and provides a computational power on the
order of GFLOPS. However, higher performance, especially
performance exceeding 100 TFLOPS, is only available when
most of the computational cores work perfectly and without
parallel overhead. In other words, significantly higher paral-
lelism is required for peta-scale algorithms. Otherwise, high
performance cannot be guaranteed at the design level. An-
other drawback to achieving high performance with a multi-
core processor system is a shortage of memory bandwidth.
Since the improvement in memory bandwidth is extremely
gradual in semiconductor technology, this results in the ab-
solute bandwidth per core being reduced, even though the
memory bandwidth has improved from one-third to half of
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the frequency of the processor. In fact, the memory bandwidth
for the processor installed in recent supercomputers is smaller
than the frequency or FLOPS rate of the processor. On a T2K
super cluster system, which is used in the present study, quad-
socket AMD Opteron Barcelona quad-cores are installed, and
each processor core operates at 2.3 GHz and can perform at a
rate of 9.2 GFLOPS. Theoretically, the memory bandwidth
of a single node is 42.7 GB/s, which is equivalent to 0.29
Byte/Flopa (=42.7 [GB/s]/(9.2 [GFLOPS]*4*4)). With re-
spect to the Fujitsu SPARC64 VIIIfx processor2) adopted for
the K-computer, a next-generation supercomputer, the mem-
ory bandwidth is 0.5 Byte/Flop (=64 [GB/s]/128 [GFLOPS]),
which is slightly higher than that on the T2K system. How-
ever, the memory bandwidth cannot reach the Byte/Flop rate
of a vector processor (for example, 2.5 Byte/Flop on an NEC
SX-9). This tendency will become more pronounced in the
future. Therefore, lower memory usage and reduced memory
communication/traffic should be considered in implementing
application codes.

We should consider two factors in the present study,

aByte/Flop is the unit for transferring data between the main memory and
the processor per single floating operation
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namely, higher parallelism and an algorithm that has a low
memory traffic property. For the eigenvalue solver for dense
symmetric matrices, the memory bottleneck is the House-
holder transformation step, in which a full dense matrix is
condensed into a compact format, a tridiagonal matrix. In
the present study, we developed two eigenvalue solvers. One
solver adopts the conventional approach, which has the prob-
lem of a bottleneck in memory access, and the other intro-
duces a very efficient algorithm, namely, narrow band reduc-
tion, to refine the bottleneck of a narrower memory band-
width.

The remainder of the present paper is organized as follows.
In Section II, we present two eigenvalue solvers, namely,
eigen_s and eigen_sx. In Section III, performance tests on
a large-scale cluster system are described. In Section IV, con-
clusions are presented and future research is discussed.

II. Algorithm for Solving an Eigenvalue Problem
with a Dense Symmetric Matrix

In this section, we describe the standard eigenvalue algo-
rithm for a real dense-symmetric matrix to compute all eigen-
values and corresponding eigenvectors, as defined by Eq. (1).
In other words, we focus only on the full-diagonalization al-
gorithm in numerical simulations.

Ax = λx,A = AT ∈ Rn×n (1)

1. Standard Approach: Eigen_s
The standard approach consists of three steps, which are

described briefly in this section.
(1) Householder Tridiagonalization

First, we define the reflector functionH, as follows:

(u, β) := H(a, k) (2)

u[1:k] = a[1:k] + sign(‖a[1:k]‖, ak)ek (3)

u[k+1:n] = 0, β = 2/‖u‖2 (4)

whereu anda are vectors of the same dimension,β returns
the scalar value, andk indicates the index of reflector oper-
ation. Using this reflector function, we first compute the re-
flector vectoru, and its factorβ. Next, we construct a House-
holder’s reflector byI − βuuT , and we can then transform
matrixA as follows:

A =

[
A0 a
aT α

]
(5)

A→
[

(I − βuuT )A0(I − βuuT ) ±‖a‖eN−1

±‖a‖eTN−1 α

]
(6)

This transformation can be applied recursively toA1 =
(I − βuuT )A0(I − βuuT ). Finally, we obtain a tridiagonal
matrix transformed from the dense matrixA. This transfor-
mation is referred to as Householder tridiagonalization.

In order to improve the performance, incorporating data
blocking into the algorithm is a practical solution. Ham-
marling et al.3) developed a block algorithm using a panel-
partitioned data distribution. Using their blocking scheme,

one of the major computational parts of the Householder
transformation can be written by a pair of matrix-matrix mul-
tiplications such asA − UV T − V UT . The Householder
transformation was originally written in terms of vector-vector
outer products. Since the Householder transformation was
accelerated dramatically on a parallel computer system, we
herein adopt this blocking strategy in the proposed solvers.
(2) Divide and Conquer Method

The second step of the standard approach is to compute
the eigenpairs for the tridiagonal matrix transformed in the
first step. Here, we adopt the divide-and-conquer algorithm
developed by Cuppen.4) This algorithm exhibits very natural
parallelism in the internal processes and can also be applied
to subproblems recursively, as shown inFig. 1. Thus, this
algorithm provides perfect parallel performance. This step
of both the standard approach and enhanced approach is pre-
sented elsewhere.5)

Fig. 1 Schematic diagram of the divide and conquer algo-
rithm

(3) Block-Householder Back-Transformation
The final step is back-transformation of the computed

eigenvectors, because the eigenvectors computed in the sec-
ond step correspond to the transformed tridiagonal matrix.
Back-transformation is the completely opposite one-sided
procedure of the Householder transformation. Thus, back-
transformation involves reverse-order matrix-multiplication
of the Householder transformation matrices, such as(I −
βnunu

T
n ) · · · (I − β2u2u

T
2 )(I − β1u1u

T
1 ). The eigenvectors

are multiplied by this matrix from the left-hand side.
As described in the forward Householder transforma-

tion, data blocking improves the performance. Back-
transformation is also accelerated by data blocking. Two con-
secutive operations of the Householder transformation can be
written as follows:

(I − β1u1u
T
1 )(I − β2u2u

T
2 ) = I − UCUT (7)

whereU = [u1, u2]. This blocking is referred to as com-
pact WY-blocking representation. Generally, matrixC in
this blocking scheme(I − β1u1u

T
1 )(I − β2u2u

T
2 ) · · · (I −

βkuku
T
k ) = I − UCUT is recursively computed as follows:

Cj :=

[
Cj−1 0

−βj−1u
T
j U1:j−1Cj−1 βj

]
(8)

Matrix C can be also represented by the following implicit
scheme:

C =
(
diag−1(β1, · · · , βk) + Lower(UTU)

)−1
(9)
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Since the above equation is represented as the inverse of
a triangular matrix, we need no explicit data forC. When
the blocking factork is small, the cost of Eqs. (8) and (9)
are similar. However, ask increases, Eq. (9) has a smaller
cost (almost half) than Eq. (8). Thus, we can choose both
equations according to blocking factork.

2. Advanced and Enhanced Approach: Eigen_sx
In the standard approach, the performance bottleneck was

determined to be hidden in the Householder transformation,
specifically, in matrix-vector multiplication.6) We also pointed
out that modern microprocessors have a low Byte/Flop rate
(used herein to transfer data from main memory to the pro-
cessor), which causes a degradation in performance. Further-
more, this suggests that matrix-vector multiplication does not
exhibit good scalability unless the memory bandwidth is im-
proved at least twofold.
(1) Narrow-Band Reduction

In order to improve the performance in the first step,
Householder tridiagonalization, we proposed another ap-
proach by which to reduce a dense matrix to a banded ma-
trix. This algorithm is referred to as narrow-band reduction.
Figure 2 shows the full algorithm of narrow-band reduction.
In Step (ii), matricesU andC, which are necessary in order
to construct a block Householder’s reflector, are defined by
Householder QR factorization using panelW . Specifically,
the outputsU andC are computed as follows:

(U,C) := Hblock(K)(W ) (10)

(ui, βi) := H(W:,i, N − i+ 1) (11)

W:,i+1:K := (I − βiuiu
T
i )W:,i+1:K (12)

U = [U, ui] (13)

whereH andC are computed by Eqs. (2) and (8), respectively.
The above scheme is applied recursively, fori = 1, 2...,K.
From Steps (iii) through (ix) in Fig.2, the block algorithm
for two-sided transformation is constructed as follows using
Hammarling’s panel-partitioned data distribution, in the same
manner as the standard Householder tridiagonalization.

(I − UCUT )A(I − UCTUT ) = A− UV T − V UT (14)

V = (AU)CT− 1

2
U(CUT (AU)CT ) (15)

whereW is a preserved variable for panel-partitioning. In ad-
dition, considering the symmetry ofA, except for symmetric
matrixS, Step (v) uses an upper triangular matrixS′.

In Fig. 2, each capital letter denotes a matrix. In many
cases, matrices are square matrices. However,U andV are
tall-skinny matrices in this case. All of the operations are writ-
ten in matrix-matrix multiplication form. As described in the
previous subsection, one of the major parts of the Householder
transformation isA−UV T − V UT , which is referred to as a
rankk update. Another major part is the matrix-vector prod-
uct is(I − βuuT )A0(I − βuuT ). Substituting matrix-vector
operations with matrix-matrix operations improves the per-
formance, because matrix-matrix multiplication, referred to
as DGEMM in the BLAS library, performs excellently (often
yielding 70-80% of the theoretical peak performance). If a fast

for j = N, . . . , 1 step−M ; i = j −M
(i) U ← ∅, V ← ∅,W ← A(∗,i+1:j)

for k = 0, . . . ,M − 1 stepK
(ii) Construct a Householder block reflector

(C,U (k)) := HBlock(K)(W[∗,j−k])
(iii) Matrix-Vectors multiplication

V̄ (k) ← A[1:j−k−1,1:j−k−1]U
(k)

(iv) ¯̄V (k) ← V̄ (k) − (UV T + V UT )U (k)

(v) V (k) ← ¯̄V (k)CT − U (k)S′,

S = 1
2CU (k)T ¯̄V (k)CT ,

S′ = (Upper(2S) + diag(S))
(vi) U ← [U,U (k)], V ← [V, V (k)]
(vii) W[∗,j−k:j] ←W[∗,j−k:j]

−(U (k)V (k)T+V (k)U (k)T )[∗,j−k:j]

endfor
(viii) A[∗,j−M+1:j] ←W
(ix) 2M rank-update

A[1:i,1:i] ← A[1:i,1:i]

− (UV T + V UT )[1:i,1:i]
endfor

Fig. 2 Narrow-band reduction algorithm

DGEMM routine tuned for a specific processor can be used in
the implementation, a significant performance improvement
can be expected. Since the performance of a matrix-vector
product is bounded by memory bandwidth, this improvement
in performance must be large on lower Byte/Flop rate pro-
cessors, such as T2K and the K-computer (0.29 and 0.5, re-
spectively). In fact, in a previous study,6) we found that the
acceleration can be increased by two to three times using this
algorithm.
(2) Divide and Conquer Method for a Banded Matrix

Narrow-band reduction does not return a tridiagonal ma-
trix, but rather a banded matrix. We also need an alternative
algorithm for the second step.

In the second step, we introduce the enhanced algorithm
of the divide and conquer method, which is also reported by
Pham et al.5) This algorithm is a natural enhancement of the
original Cuppen’s algorithm and can be easily implemented
by very reliable libraries, for example, LAPACK and ScaLA-
PACK. The outline of the algorithm is shown inFig. 3, and
numerical aspects and performance test are reported in a pre-
vious study .5)

(3) Block-Householder Back-Transformation
The final step in the advanced solver is also back-

transformation. This is similar to the standard approach ex-
cept that the length of reflector vector is shorter in one ele-
ment. Most of the algorithm for the block-Householder back-
transformation was discussed in the previous subsection.

III. Performance Test

1. Parallel Implementation

(1) Parallel Programming and Parallelization Model
Since the proposed solvers, eigen_s and eigen_sx, are to

be used on the K-computer next-generation supercomputer
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function [Λ, X]=BAND_DC(B)
if (dim(B) is small)

Compute[Λ, X] = eigen(B) andreturn
endif
DecomposeB intoB1 andB2 with K-rank
perturbations by using SVD.

B = diag(B1, B2) + UUT , U ∈ RN×K

[Λ1, X1] = BAND_DC(B1)
[Λ2, X2] = BAND_DC(B2)
LetΛ(0) = diag(Λ1,Λ2) andX(0) = diag(X1, X2).
for j = 1, . . . ,K

LetB(j) = Λ(j−1) + vjv
T
j , vj = X(j−1)Tuj .

Solve eigenvalue problem forB(j)

f(λ) = 1 +
∑
i

(vj [i])
2

λi − λ
= 0

x = X(j−1)Normal((Λ(j−1)−λI)−1vj),
then setΛ(j) = diag(λ1, . . . , λN ),
andX(j) = [x1, . . . , xN ].

endfor
Set[Λ, X] = [Λ(K), X(K)] andreturn .

end

Fig. 3 Divide and Conquer method for a banded matrix

system, these solvers are developed with three types of par-
allelism.

1. MPI: message passing parallelism (for interconnected
distributed memory)

2. OpenMP: thread parallelism (for shared memory)

3. SIMD: instruction level parallelism

We elaborately do MPI and OpenMP hybrid parallel pro-
gramming, and the proposed solvers run in thread par-
allel mode, message passing parallel mode, or combined
mode. We can specify the running mode for runtime options
(ex. export OMP_NUM_THREADS=4; mpirun -np 3
./a.out ). In addition, we thoroughly tune the codes in
SIMD fashion and use highly tuned BLAS libraries. There-
fore, most of the internal loop structures are expected to per-
form at theoretical peak performance. In particular, the block-
ing algorithm consists of several matrix-matrix multiplica-
tions, which can run also rather quickly.
(2) Data Distribution, Data Layout, and Process Mapping

We adopt only one matrix data distribution, namely, the
two-dimensional cyclic distribution depicted inFig. 4. Pro-
cessor mapping on two-dimensional Cartesian coordinates is
very flexible, and users can specify any pattern to be used dur-
ing execution. For example, when NP = 24, {(1,24), (2,12),
(3,8), . . . , (24,1) } patterns are available (square or near-
square mapping is selected by default). In particular, the K-
computer adopts the Tofu interconnect,8) which is a 6-D torus
network. This flexible feature is preferable for a brand-new
network.

(3) Core Implementation and 2D-Communication
Basically, all of the matrices and vectors are distributed in

a two-dimensional distribution. Column vectors and row vec-
tors are distributed over the subgroup at the same row and col-
umn, respectively. When the specific vector on a matrix, for
example,A(1:6,6) in Fig. 4, is required, the data is repli-
cated with simultaneously broadcasting over the subgroups
(:,column) or (row,:), namely, multicasting. Collective com-
munication is designed over column or row groups in the two-
dimensional distribution. Collective communication is quite
scalable when the number of computational nodes increases.

In order to compute the inner product or norm, af-
ter partial and local summation, collective communication
(MPI_Allreduce with MPI_SUMoption) is called. Matrix-
vector multiplication and rank-k update, that is, Steps (iii) and
(ix) in Fig. 2, require the row vectors transposed from the col-
umn vectors. Thus, the Householder tridiagonalization and
the narrow-band reduction routines are designed to have two
duplicated vectors forU andV .
(4) Miscellaneous Information

The environment for development and experiments in this
work is shown inTable 1. We use the T2K super cluster
system housed at University of Tokyo, which has quad-core
AMD Barcelona processors, largest computational partition
is 512 nodes (8,192 cores). In this study, 256 nodes (4,096
cores) are allowed to use, in which theoretical peak perfor-
mance reaches 37.6 TFLOPS. As presented, our solver is de-
veloped in a hybrid parallel programming style. Thus, quite
flexible execution or assignment onto computational cores is
available. With the consideration of the conflict on memory
bus among cores (in other words, in order to avoid unneces-
sary traffic on hyper transport bridges), we assign each com-
putational process onto a single socket, statically.

2. Parallel Performance for Large-Scale Problems

(1) Performance and Scalability
Varying the dimensions of the test matrix (We use the Frank

matrix which is a well-known benchmark, the eigenvalues and
corresponding eigenvectors of which can be calculated analyt-
ically.) and the number of nodes, the elapsed time of our two
solvers is measured on the T2K super cluster system.Fig-
ures 5 and6 show the results on a logarithm scale. The pro-
posed solvers are scalable when the dimension of the matrix
is large, e.g., 20,000. Although the graphs in these figures
appear quite similar, there are differences. Both solvers have
similar parallel scalability. However, the solvers do not ex-
hibit good scalability in the case of smaller problems. Since
parallel overhead cannot be concealed behind the computa-
tional cost when the problem size is smaller, we can find the
trade-off point. In addition, eigen_sx is slightly faster than
eigen_s when the dimension of the matrix is large.
Figure 7 shows the performance scalability of eigen_s. Even
though the dimension of the test matrix is relatively small, ac-
ceptable performance scalability is achieved for the case in
which N = 38,400. The performance degrades approximately
50% from the ideal performance. In fact, the ideal perfor-
mance reaches approximately 20% of the theoretical peak per-
formance, and the actual performance remains at 10% of the
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Fig. 4 2D data distribution (left) and data layout and process mapping (right)

Table 1 Hardware and software configuration for our devel-
opment on the T2K cluster system

Hardware
CPU: AMD Barcelona quad core 2.3 GHz

4 processor sockets/node
256 nodes are allowed on this study

Main memory: DDR2 32 GB/node
(28 GB is available for users)
42.7 GB/s/node

Theoretical peak: 147.2 GFLOPS/node
27.683 TFLOPS (256 nodes)

Interconnection: Myrinet 5 GB/s×2 (full-bisection)

Software
OS: Redhat Enterprise Linux 5
Compiler: Intel Fortran compiler 11.0.074

options-g -axW -openmp
MPI: MPICH-MX (MPI-1.2)
BLAS: Intel MKL 11.0.074
LAPACK: Intel MKL 11.0.074
ScaLAPACK: version 1.8.0 (compiled)
Affiliation control: numactl

--physcpubind= 4*MPIID :4*MPIID+3

theoretical peak. This suggests that, even if eigen_s solves
a larger eigenvalue problem, the performance is bounded by
20% of the theoretical peak.

Based on previous studies,7) we found that when the dimen-
sion of the problem becomes large, the cost of the divide and
conquer method becomes smaller than the costs of the other
two steps.
(2) Performance Prediction with eigen_sx

As described in the previous section, the performance of
eigen_sx is easily improved using fast BLAS implementa-
tions. In addition, we can expect to reduce the communica-
tion overhead because data blocking also agglomerate couple
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Fig. 5 Elapsed time for full-diagonalization using eigen_s
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Fig. 6 Elapsed time for full-diagonalization using eigen_sx

of message passing. This suggests that for larger-scale prob-
lems, for example, diagonalization for a more than100,000-
dimensional matrix, eigen_sx acts as a eigenvalue solver.
Considering the first step of both eigen_s and eigen_sx,we
perform another large numerical experiment, as shown in
Figs.8 and9. In this experiment, we use 256 nodes, and 4,096
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Fig. 7 Performance scalability of eigen_s on the T2K cluster system

N= 200000 M= 128 NM= 6256
NUM.OF.PROCESS= 1024 ( 32 32 )
NUM.OF.THREADS= 4
calc (u,beta) 258.480158567429[s]
mat-vec (Au) 2783.94904828072[s] 1915.74387348326[GFLOPS]
2update (A-uv-vu) 268.623162031174[s] 19854.3315960014[GFLOPS]
calc v 61.3560543060303[s]
v=v-(UV+VU)u 120.128936290741[s]
UV post reduction 1.13441467285156[s]
COMM_STAT

BCAST :: 96.1706650257111[s]
REDUCE :: 248.613152980804[s]
REDIST :: 0.000000000000000E+000[s]
GATHER :: 14.1590096950531[s]

TRD-BLK 200000 3513.90630698204[s] 3035.55807548775 [GFLOPS]

Fig. 8 Computing log 1: the largest performance test for eigen_s on the T2K cluster system

N= 200000 M= 128 NM= 6256
NUM.OF.PROCESS= 1024 ( 32 32 )
NUM.OF.THREADS= 4
calc (u,beta) 208.912147521973[s]
mat-vec (Au) 1510.60236501694[s] 3530.60041268606[GFLOPS]
2update (A-uv-vu) 247.699535608292[s] 21531.4627871059[GFLOPS]
calc v 63.7259461879730[s]
v=v-(UV+VU)u 177.137169361115[s]
UV post reduction 3.22072529792786[s]
COMM_STAT

BCAST :: 86.7426195144653[s]
REDUCE :: 100.455729246140[s]
REDIST :: 0.000000000000000E+000[s]

TRD-BLK 200000 2227.20995497704[s] 4789.25062400624 [GFLOPS]

Fig. 9 Computing log 2: the largest performance test for eigen_sx on the T2K cluster system
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cores. Unfortunately, we were not able to obtain the results
in the other two steps due to the limitation of the CPU time.
Eigen_s and eigen_sx achieve performances of 3.0 TFLOPS
and 4.7 TFLOPS, respectively, which are equivalent to 8%
and 12% of the theoretical peak performance, respectively.

We predict the overall performance based on these log files.
Since the greater part of the third step consists of DGEMM
in BLAS, back-transformation is expected to perform fine.
If back-transformation exhibits the performance listed in the
GFLOPS rate at third column of the line of ‘2update (A-uv-
vu)’ in Fig. 8, the computational time in the third step can
be expected to be approximately 800 seconds. (The com-
putational cost discussed herein is23N

3. In contrast, that
of the third step of back-transformation is2N3.) Accord-
ing to previous studies, the cost of the second step becomes
much smaller than that of the third step. We estimate the cost
of this part to be 10% of the cost of the third step. There-
fore, the overall cost of eigen_s and eigen_sx are roughly esti-
mated to be 4,473 seconds (=3,513+160+800) and 3,507 sec-
onds (=2,227+160*3+800), respectively. We can save approx-
imately 1,000 seconds by using eigen_sx on the T2K system.
(3) Toward the Development of the K-Computer

As described in the introduction, the memory bandwidth of
the K-computer is approximately twice as wide as that of the
T2K system. The performance ratio between ‘mat-vec’ and
‘2update’ clearly becomes smaller on the K-computer. The ra-
tio for eigen_s on the K-computer is expected to be similar to
the ratio for eigen_sx on the T2K system. The performance on
‘mat-vec’ improves by the replacement to the matrix-matrix
product at most two times. The performance ratio between
‘mat-vec’ and ‘2update’ may improve from 1:5 to 1:4. If the
DGEMM routine is assumed to account for 80% of the theo-
retical performance of the K-computer, we predict the perfor-
mance more than 16 to 20% of the theoretical peak. Hence,
the performance of eigen_sx on the K-computer exceeds that
on the T2K system because the memory bandwidth of the K-
computer is wider. If a narrower Byte/Flop system is required,
we can accelerate the narrow-band reduction step by using a
wider intermediate-band matrix.6) Although this increases the
computational cost of the divide-and-conquer step, and this
trade-off must be considered, this approach is effective for a
system in which the Byte/Flop rate is smaller. The resulting
performance improvement is significant in large-scale simula-
tions.

Eigen_s and eigen_sx are developed for the next-
generation supercomputer K-computer. The K-computer is
assumed to possess more than 100,000 interconnected cores.
In addition to the innovation to the memory bandwidth, im-
proved effectiveness of multicore processors and reduced
communication are key consideration in large-scale system.
The communication costs reported in the logs (Figs.8 and9)
demonstrate that eigen_sx requires less communication, thus
it is also expected to perform well on K-computer.

IV. Related Research

The target system of eigen_s is a typical homogenous sys-
tem in the peta-scale computing era. It is thought that the
K-computer and similar next-generation systems will be the

last generation of systems that have a homogeneous archi-
tecture. In an effort to realize next-generation or next-next-
generation supercomputing, a number of computer architec-
tures have been proposed, and several of these have been
ranked in top positions according to the top500 benchmark.
In this section, we discuss research on eigenvalue solvers or
linear algebra software related to next-generation computing.

1. Many-Core and GPGPU: General Purpose Computing
on GPU’s

In November 2010, the GPU cluster system was ranked
highest and two other GPU systems were ranked in the top
five according to the Linpack benchmark.1) Although it is un-
clear how long this situation will continue in the future, GPUs
and many-core processors are one of the key issues to exe-
scale era. PLASMA9) and MAGMA10) are well-known soft-
ware packages for performing numerical linear algebra oper-
ations. PLASMA is a new-generation LAPACK implementa-
tion that introduced effective task scheduling and communi-
cation avoiding algorithms. MAGMA focuses on the GPGPU
and provides the GPU version of LAPACK with a similar
scheduling mechanism and a highly tuned BLAS, namely,
MAGMABLAS.

2. Massively Parallel Approach

Since the performance on a single processor is at most 1
to 10 TFLOPS, a PFLOPS class system must be massively
parallel and have 1,000 or more interconnected nodes. As the
memory wall becomes more severe, the network latency and
throughput walls also merge. Naturally, an effective commu-
nication algorithm that takes into consideration the network
bottleneck is important. Eigen_s and eigen_sx adopt flexible
2D data-distribution and CPU-mapping. Katagiri and Itoh11)

also proposed a grid-free algorithm for a massively parallel
dense symmetric eigensolver with a communication splitting
multicasting algorithm. Furthermore, their algorithm can be
applied to small matrices in massively parallel processing that
takes an appropriate process mapping.

V. Conclusion

In the present paper, we have introduced eigen_s and
eigen_sx, which are high-performance, high-scalable eigen-
value solvers that were developed for the K-computer, a next-
generation supercomputer. We introduced several optimiza-
tion techniques, such as a blocking scheme to overcome the
shortage of memory bandwidth. This approach yields a good
performance improvement. Furthermore, this approach can
avoid unnecessary communication overhead. Although we
have not sufficiently examined the performance of the pro-
posed eigensolvers with respect to large-scale problems in-
volving a large number of computational cores, the results of
the present study indicate that eigen_sx will be able to perform
well on the K-computer. We therefore conclude that eigen_s
and eigen_sx are promising eigensolvers for present and fu-
ture parallel computer systems.

In future studies, we intend to examine the performance of
eigen_s and eigen_sx on larger computer systems having more
than 10,000 cores. We have thus far confirmed that eigen_s
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works with 8,192 processor cores on the T2K cluster sys-
tem. Furthermore, communication algorithms that yield fewer
data transfers must be investigated in order to efficiently apply
eigen_s and eigen_sx to a huge number of processor cores.

Finally, the authors would like to thank Huu Phuong Pham
for his support of the present study. The present research
was supported in part by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research (B),
21300013, 21300007, 20300007, 20500044, and Scientific
Research on Priority Areas, 21013014.
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