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esources, it is especially necessary to calculate in 

-DRM method using a Monte Carlo 
g with its parallelization and the 

loped for parallel computing. 
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r sub-response matrices 

(1) Transmission probability: (T) 
(2) Neighbor-induced pro n probability: (S) 
(3) Self-induced production probability: (A) 
(4) Escape probabilit

These sub-response matrices are calculated in the infinite 
lattice using a Monte Carlo calculation. Since the Monte 
Carlo calculation system is small, the statistical uncertainty 
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II. 3D-DRM Method and Com
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are defined as the following. 
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where jsmax denotes the number of fuel rods in the corre-
sponding bundle and lmax denotes the number of axial zones 
in the corresponding fuel rod. R(k)ii,gi→io,go is an expected 
number of neutrons which are induced by a neutron entering 
from the ii’th face at the gi’th group and which eventually 
exit to the io’th face at the go’th group. The face which neu-
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evaluated under the condition where overall incoming and 
outgoing neutron currents are balanced. A pin-by-pin neu-
tron production rate P can be evaluated directly as 
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P is also a one dimensional vector. 
(2) Matrix Symmetry 
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some axial zones as shown in Fig. 1. Since the sub response 
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b-surfaces, R1 represents 
responses to the bottom sub-surfaces and R2 represents re-

s a result of using this 
 is reduced by half. 

ethod 

)

At first, the out-going currents in red nodes are calculated 
and in-coming currents in black nodes are updated. Next, the 
out-going currents in black nodes are calculated. This me-
thod accelerates the current convergence by updating half of 
the currents in the core during the whole current calculation.  
 
3. Parallelization with Message Passing Interface (MPI) 

and OpenMP 
(1) Parallelization 

Parallelization of a calculation code is needed in order to 
get fast calculations using many computer resources. There 

sponses to the upper sub-surfaces. A
symmetry, the number of calculations
(3) Three-Dimensional Red-Black M

The core k-effective is obtained by iterating current cal-
es the red-black response 

matrix acceleration method  to reduce the number of itera-
tions. This acceleration method divides core nodes into two 

 method, the core nodes 
are alternately divided in three-dimensions as shown in 
Fig. 2. 
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node

sub-surface

Axial zone 1

Axial zone 2

node

Axial node k

Axial node k+1

sub-surface

Axial zone 1

Axial zone 2

Fig. 1 An axially divided node 
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Fig. 2 The color sets for red-black method 
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III. Numerical Results 
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chart is shown in Fig. 5. The parallelized section is only 
neutronic calculation part. The section has a nested iteration 
structure. The inner iteration for the current convergence is 
limited to 10 iterations. The outer iteration for the k-loop 
convergence is limited to 20 iterations. The automatic load 
balancing method measures the CPU time in neutronic cal-
culation section and rearranges the core nodes after thermal 
hydraulic calculation. These calculations continue until con-
vergence of the k-effective. In the end, the burn-up 
calculation performed. These neutronic and thermal hydrau-
lic calculations go the next exposure step. 
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and thermal hydraulic 
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The core calculation was performed in 12 PCs which had 
Core2 Quad Q9650 3 GHz (4 cores) and 8 GB memory. The 
network connection interface was gigabit Ethernet.  

Figure 6 shows the k-effective difference for k iterations 
during one thermal-hydraulic loop in the 3D-DRM method 
with or without the red-black method. The method without 
the red-black method indicates the method which all 
in-coming and out-going currents are updated simultane-
ously. The k-effective difference means the difference from 
the k-effective value in convergence. Then, as the number of 
iterations increases, the k-effective difference decreases. The 
3D-DRM method with the red-black method had 33% fewer 
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which is based on a Monte Carlo n
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spectrum calculation, and the total 
is 190. There were three energy g
sub-response matrices: 

node. The 3D-DRM method com
The parallelization scheme is shown in Fig. 3. 

A MPI node corresponds to a physical compu
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BWR fuel assemblies
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(2) Automatic Load Ba
In Eq. (3), the fuel nodes need to reconstruct 

matrices but the reflector nodes do not. Then, th
which has more reflector nodes has less comput
Since this unbalance causes computational inef
core nodes are divided automatically and evenl
computational load is uniform. Also, in PC cl
have different performance, the load balancing
maximize the efficiency. 
 
4. 3D-DRM Core Simulator 
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The results of the automatic load balancing method are 
shown in Fig. 7. One iteration means one power and void 
coupled iteration. In the first iteration, the core nodes were 
evenly allocated to MPI nodes. The part of the core nodes in 
an axial layer is allocated to an MPI node for the uniform 
allocation. MPI node numbers 1 and 12 had shorter calcula-
tion times because these nodes which allocated upper or 
lower reflector nodes had more reflector nodes. In the sec-
ond iteration, the automatic load balancer allocated more 
core nodes to MPI node numbers 1 and 12. As a result of 
load balancing, the calculation time was reduced to 10% of 
that after the first iteration. 

 PC cluster are shown in 
Fig. 8. The actual speedup was less than the ideal efficiency. 
That is why the parallelization code has some 
non-parallelized routines and a larger number of parallel 
computers cause shorter calculation times in parallel routines 
and relatively longer times in non-parallelized routines: this 
effect is called Amdahl's law.9) Moreover, since more MPI 
divisions lead to more network communication time, the 
actual efficiency was lower with more nodes. In the 
3D-DRM method, the speedup was about 8.5 in 12 PCs. 

The total calculation time for an ABWR quarter core 
power and void iteration was about 4.5 hours with 12 PCs. 
The parallelization for the 3D-DRM method worked effec-
tively. 
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Fig. 6 Difference of k-effective for the number of iterations 

Fig. 5 Flow chart of parallelized 3D-DRM core simulator 
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