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We estimate the ground state energy of the hydrogen atom using the variational Monte Carlo (VMC) method with
a simple model trial wavefunction and the RANLUX random number generator with five luxury levels (RANLUX-[0-
4]). The resulting VMC energies are compared with the reference (exact) energy that is analytically evaluated with
the same wavefunction as in the VMC simulations. The VMC energies with RANLUX-[1-4] are in good agreement
with the reference energy within their statistical errors. On the other hand, RANLUX-0 with the lowest luxury level is
found to give a systematic error of about0.2 mhartree. In addition, we examine the time-step dependence of statistical
quantities in VMC simulations. We find that the error bar of the VMC energy and the correlation time in VMC data
have a minimum at a 50 % acceptance ratio in the Metropolis procedure.
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I. Introduction

In our previous study of atomic and molecular systems, we
have investigated several random number generators (RNGs)
in quantum Monte Carlo (QMC) simulations.1) A multiple
recursive generator with 8-th order recursion (MRG8)2) and
the Mersenne twister generator (MT19937)3) were tested and
compared with the RANLUX generator with five luxury lev-
els (RANLUX-[0-4]).4) It was found that the QMC energies
using the RANLUX generators consist with each other be-
yond the statistical error bar (standard error in the QMC en-
ergy estimate). In contrast, MRG and MT19937 give consis-
tent results to within their error bars. This result may indi-
cate that the statistical biases (systematic errors) in the QMC
simulations strongly depend on the luxury levels in the RAN-
LUX generators. In this study we made a detailed analysis of
QMC results with RANLUX-[0-4] for the simplest example in
quantum chemistry, i.e., the hydrogen atom. We estimated its
ground state energy using the variational Monte Carlo (VMC)
method with a simple model trial wavefunction. The resulting
VMC energies were compared with the reference energy that
is analytically evaluated with the same wavefunction as in the
VMC simulations. In addition, we have first examined how
the choice of time step in the VMC simulations affects statis-
tical quantities such as the error bar of the VMC energy and
correlation time.

In various fields Monte Carlo (MC) methods5–7) are used
mainly for the following two purposes: (i) to simulate a sys-
tem that has an intrinsic randomness and (ii) to solve a prob-
lem that is impossible or difficult to solve in either analytic or
standard numerical ways. In quantum chemistry, MC is avail-
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able in the context of the latter case to evaluate the electronic
structure of atoms, molecules, and solids, which is known as
(ab initio or first-principles) quantum Monte Carlo (QMC).8,9)

QMC has attracted a lot of attention because of its highly
accurate chemical description as well as moderate computa-
tional cost that scales as linear to cubic with respect to sys-
tem size, compared to other conventional quantum chemistry
methods.

Due to its statistical treatment, QMC evaluates any physi-
cal quantity accompanied with a statistical error bar (standard
error). In quantum chemistry, interest is taken in the energy
difference between the two systems, e.g., molecular binding
energy that is the difference in the total energy between the
molecule and its constituent atoms. In order to obtain numer-
ically meaningful results using QMC, the total energy differ-
ence between the two systems should be at least larger than the
corresponding error bar by an order of magnitude. Since a typ-
ical quantum chemistry calculation requires so-called chemi-
cal accuracy of about1 kcal/mol (=1.6 mhartree) for the en-
ergy difference, the statistical error in the QMC energy should
be∼ 0.1 mhartree.

A (pseudo) random number generator (RNG)5–7) plays
an important role in any MC simulation, including QMC.
It has been reported that ‘good’ RNGs in the context of
statistical tests10,11) are not necessarily good for some MC
simulations,12–20) i.e., the RNGs give a systematic error larger
than the statistical error. In practice, the statistical biases due
to RNGs depend on not only RNGs themselves, but also MC
applications which use the RNGs. In our previous study, we
have found that this is the case for QMC simulations of atomic
and molecular systems.1)

The present paper is organized as follows: In SectionII
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we describe VMC algorithms focusing on where RNG is used
and make a brief comment on RNGs, including the RANLUX
generator. Numerical results and discussion are given in Sec-
tion III . SectionIV summarizes the present study.

II. Variational Monte Carlo Method and Random
Number Generator

This section describes the VMC algorithm related only
to RNG, namely, the generation of random walks and the
Metropolis accept/reject procedure. For a general and detailed
description of QMC methods, it would be helpful to refer to
textbooks8) and review papers.9) All the present calculations
were performed using the CASINO code.22)

The total energy of a many-electron system is given as the
expectation value of the Hamiltonian̂H with respect to the
many-electron wave functionΨ:

E[Ψ] =
∫

dREL(R)|Ψ(R)|2∫
dR|Ψ(R)|2

, (1)

whereR= (r1, . . . , rN ) is a point in the configuration space
of theN -electron system andEL(R) = Ψ−1(R)Ĥ(R)Ψ(R)
is the local energy. (N = 1 for the hydrogen atom.) In VMC
one adopts the trial wavefunctionΨT (R) and evaluates the
expectation value with respect toΨT (R) using the MC inte-
gration scheme, i.e., generating a sequence of configurations
{Rm : m = 1, . . . ,M} in 3N -dimensional space distributed
according toΨ2

T using the the Metropolis algorithm23) and av-
eraging the corresponding local energies:

E[Ψ] ≈ 1
M

M∑
m=1

EL(Rm) ≡ ⟨EL⟩. (2)

The Metropolis transition probability density is a Gaussian
distribution with varianceτ , whereτ is the VMC time step
(dtvmc).

According to the central limit theorem, the variance of the
MC estimate ofE[Ψ] is σ̂2

EL
/M , where the variance of the

functionEL (i.e. σ̂2
EL

) is given by

σ̂2
EL

=
1
M

M∑
m=1

[
EL(Rm)2

]
− ⟨EL⟩2, (3)

and hence an estimate of the size of the error bar (or stan-
dard error) on the MC estimate ofE[Ψ] is ± σ̂EL

/
√

M . Note
that this relation holds if and only if⟨EL⟩ is known exactly.
Actually the denominator in the varianceM is replaced with
M − 1, as shown in statistics texts, because⟨EL⟩ is in reality
measured as a MC sampling mean on computers.

In the actual determination of statistical errors of the VMC
estimates, however, we should take into account (serial) corre-
lations (or autocorrelations) between successive points{Rm}
generated in the Metropolis procedure. Using the autocorre-
lation function

C(k)=
M−k∑
m=1

(EL(Rm)−⟨EL⟩)(EL(Rm+k)−⟨EL⟩)
(M − k) σ̂2

EL

, (4)

we may quantitatively evaluate such correlations in two ways:
exponential and integrated correlation times. The exponen-
tial correlation timeτexp is obtained from a relationC(k) ∼
exp(−k/τexp) for k ≫ 1, whereas the integrated oneτint is
defined as

τint =
∞∑

k=1

C(k). (5)

For large enoughM , we obtain the true variance ofEL, i.e.,
σEL , from a relation

σ2
EL

= σ̂2
EL

(1 + 2τint), (6)

which means that the naive estimate of the size of the error
bar always underestimates the true value. In other words, au-
tocorrelations reduces the number of statistically uncorrelated
samples fromM to M/(1 + 2τint).

The method of data blocking is also available for estimat-
ing the error bar.26) In this method, we gather successive data
points into blocks and average over the data in each block, and
then calculate the variance of the set of block averages. Pro-
vided that the block length is much greater than the correlation
time between data points, the block averages are statistically
independent and an unbiased estimate of the mean is obtained.
We used the blocking method to estimate the error bar of the
VMC energy. In the present study we chose a block length of
1000, which is two orders of magnitude longer than the corre-
lation times (see SectionIII .3) and hence long enough for the
purpose of estimating the error bar correctly.

In the present study we adopt a trial wavefunction as

ΨT (r) = αe−αr + (1 − α)e−(α+1)r (7)

with a parameterα =1.1.24) Although this form of the wave-
function contains the exact one (α=1) for the hydrogen atom,
the MC integration is meaningless since the local energy is
constant. This model wavefunction detunes the exact one and
hence the local energyEL can be a function of the position in
configuration space. In addition, this trial wavefunction auto-
matically satisfies the electron-nucleus cusp condition, which
prevents the local energy having a singularity at the electron-
nucleus coalescence and enables one to investigate systematic
errors due to RNGs alone.

The RNG is used (i) to generate the trial move of config-
uration and (ii) to perform its accept/reject procedure in the
Metropolis algorithm.23) In MC simulations the statistical bi-
ases due to RNGs originate from mainly the autocorrelations
(or serial correlations) and biases due to non-uniformity of
the sampling points.25) The former leads to an incorrect sta-
tistical error bar which is smaller than the exact one, while
the latter introduces a systematic error in the mean value. For
the former, a blocking procedure can be used to remove the
correlation.26) The problem regarding the latter is consider-
ably more difficult to resolve.25)

RANLUX has been a very popular RNG in the Monte
Carlo community, especially for computationally demanding
physical/chemical problems.4) Its algorithm was derived by
applying chaos theory to an implementation of the subtract-
with-borrow (SWB) generator, RCARYY.21,27) According to
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chaos theory, some random numbers are removed to destroy
the serial correlations in the original RCARRY sequence, i.e.,
given an integerp (p > 24), one first takes24 successive
RCARRY sequences and discardsp− 24 numbers, then takes
24 sequences, and so on. In his paper Lüscher4) provided five
p values, i.e.,p = 24, 48, 97, 223, and389, which correspond
to the "luxury levels" of RANLUX ranging0-4. Note that
SWB has been proven to be equivalent to an efficient imple-
mentation of the linear congruential generator with a much
longer period.28) This is the reason why SWB fails in some
randomness tests.29)

We tested the convergence of the VMC energy with respect
to the Monte Carlo steps rangingNMC = 109 − 1015 (see
Fig. 1). The time step for the trial move (dtvmc) is deter-
mined such that the acceptance/rejection ratio≈ 0.5. In the
present study, we obtained dtvmc= 0.5 from preliminary sim-
ulations. We also show similar results using RANLUX-0 and
RANLUX-4 in order to understand how the choice of dtvmc
affects the properties of a VMC calculation, i.e., the accep-
tance ratio, total energy, error bar, and correlation time.

In practical VMC simulations, a subsequence is gener-
ated by taking everyk-th element from the original sequence,
wherek depends on the system, in order to weaken the serial
autocorrelation. The subsequence can modify the original se-
quence. In this study, however, we did not consider such a
treatment because we intend to focus on the intrinsic proper-
ties of the RANLUX generators. In order to consider intrinsic
properties of a single RNG sequence, we did not perform a
parallel VMC calculation, which may hide such properties.

III. Results and Discussion

1. Sampling Bias

The VMC ground state energies of the hydrogen atom with
the trial wavefunction in Eq. (7) were evaluated using differ-
ent RANLUX generators. The reference energy of−497.3792
mhartree was analytically calculated with the same wavefunc-
tion as in VMC. Figure1 highlights the VMC energyEVMC

convergence with respect to the Monte Carlo stepsNMC for
RANLUX-0 and RANLUX-4. Comparing the energies at
NMC = 1013 and 1015, it is found that the VMC energies
with RANLUX-0 and RANLUX-4 atNMC = 1013 converge
to their own limits. Within one error bar (σ), RANLUX-4
gives the same VMC energy at everyNMC, while the VMC
energies with RANLUX-0 differ atNMC = 1010 and1013,
though they coincide within2σ. Consequently, we may adopt
the VMC energy atNMC = 1013 as the converged one.

Table 1 reports the VMC energies and their error bars
with RANLUX-[0-4] at NMC = 1013. RANLUX-1 and
RANLUX-2 give the same energies as the reference en-
ergy within their σ’s, respectively, while RANLUX-3 and
RANLUX-4 within their 2σ’s, respectively. On the other
hand, RANLUX-0 give the VMC energy outside40σ. It is
evident that RANLUX-0 gives a systematic error arising from
a poor quality RNG. This result seems unsurprising since
RANLUX-0 is theoretically equivalent to a notorious linear
congruential generator, as mentioned in SectionII .

Fig. 1 VMC energy convergence with respect to the Monte
Carlo steps. The energies are in units of mhartree and
shifted by the reference energy of497.3792 mhartree.

Table 1 Energy differences between evaluated VMC and
reference energies [∆EVMC = EVMC − (−497.3792)
(mhartree)] and their error bars (σ) with RANLUX-[0-4]
atNMC = 1013. All energies are in units of mhartree.

∆EVMC σ

RANLUX-0 0.2375 0.0056
RANLUX-1 −0.0033 0.0066
RANLUX-2 −0.0045 0.0056
RANLUX-3 0.0105 0.0065
RANLUX-4 0.0066 0.0062

2. Computational Costs

Figure 2 shows the computational (CPU) times in the
RANLUX routine to generate each RANLUX sequence as a
function of p (see SectionII ). It is obvious from this figure
that the CPU time is approximately proportional top, which
is consistent with a previous study.1) The fraction of time used
by the RANLUX routine compared to the total VMC routine
is about 1%. In the present case the difference in the total
CPU time between luxury levels was negligible, but it would
be more significant (an order of hours) for larger systems in
actual QMC simulations, which take a couple of days.

3. Correlation Time in QMC

Table 2 gives a list of the integrated correlation times de-
fined in Eq. (5) and their error bars. No significant difference
of the correlation time between the RANLUX generators was
found, similar to results reported in our previous study.1) It is
likely that the autocorrelation does not explicitly relate to the
systematic error.

4. Time-Step Dependence in VMC

Figure 3 highlights the VMC time step (dtvmc) depen-
dence of various quantities in a VMC simulation: (a) accep-
tance ratio in the Metropolis procedure, (b) VMC energy, (c)
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Fig. 2 CPU time [sec] for each RANLUX, plotted as the de-
pendence onp-parameter controlling the luxury level, e.g.,
p = 24 indicates RANLUX-0 and so on. See SectionII .

Table 2 Correlation times and their error bars with
RANLUX-[0-4]. All times are given in units of Monte
Carlo steps.

Correlation time Error bar

RANLUX-0 17.80 0.82
RANLUX-1 18.43 0.87
RANLUX-2 17.92 0.84
RANLUX-3 17.90 0.84
RANLUX-4 17.95 0.84

error bar in the evaluation of the VMC energy, and (d) correla-
tion time in the evaluation of the VMC energy. The VMC cal-
culations were performed with RANLUX-0 and RANLUX-4
atNMC = 1013, i.e., the number of Monte Carlo steps is com-
mon to every VMC simulation with different values of dtvmc.
As shown in Fig. 3(a), the acceptance ratio abruptly decreases
with a larger dtvmc. dtvmc= 0.5 gives an acceptance ratio
of ≈ 50%. Figure 3(b) shows that the VMC energies with
RANLUX-0 strongly depend on the values of dtvmc, whereas
those with RANLUX-4 have a relatively weak dependence. It
is found from Figs. 3(c) and (d) that the error bars and cor-
relation times are a minimum at dtvmc≈ 0.5, which corre-
sponds to an acceptance ratio of50%. This result implies that
a 50 % acceptance ratio leads to the most efficient VMC sim-
ulation. Although in the Monte Carlo community the above
results have been heuristically determined as approximately
optimal time step choices, the theoretical reason for this has
not been investigated and discussed, especially in the first-
principles QMC community, so far as we are aware.

IV. Summary

We estimated the ground state energy of the hydrogen atom
using the variational Monte Carlo (VMC) method with a sim-
ple model trial wavefunction and the RANLUX random num-
ber generator with five luxury levels (RANLUX-[0-4]). The
VMC energies with RANLUX-1 and RANLUX-2 were con-
sistent with the exact energy within theirσ’s, whereas those

(a)

(b)

(c)

(a)

(b)

(c)

(d)

Fig. 3 VMC time step (dtvmc) dependence of (a) accep-
tance ratio, (b) VMC energy, (c) error bar (error bar), and
(d) correlation time for RANLUX-0 and RANLUX-4 at
NMC = 1013.

with RANLUX-3 and RANLUX-4 within their2σ’s. On the
other hand, it was found that RANLUX-0 gives an evident
systematic error of about0.2 mhartree in the evaluation of
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the VMC energy. We also examined the VMC time step de-
pendence in VMC simulations. It was found that a 50 %
acceptance ratio gives an optimum VMC time step in terms
of VMC simulation efficiency. Future work on this subject
will be to conduct the same benchmarks on parallel/vector su-
percomputer systems, and analyze the performance of various
RNGs such as MRG8,2) MT19937,3) as well as physical ran-
dom number generators.
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