Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.51-55 (2011)

ARTICLE

Quantum Monte Carlo Simulations with RANLUX Random Number Generator
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We estimate the ground state energy of the hydrogen atom using the variational Monte Carlo (VMC) method with

a simple model trial wavefunction and the RANLUX random number generator with five luxury levels (RANLUX-[O-
4]). The resulting VMC energies are compared with the reference (exact) energy that is analytically evaluated with
the same wavefunction as in the VMC simulations. The VMC energies with RANLUX-[1-4] are in good agreement
with the reference energy within their statistical errors. On the other hand, RANLUX-0 with the lowest luxury level is
found to give a systematic error of ab@u® mhartree. In addition, we examine the time-step dependence of statistical
guantities in VMC simulations. We find that the error bar of the VMC energy and the correlation time in VMC data
have a minimum at a 50 % acceptance ratio in the Metropolis procedure.
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I. Introduction able in the context of the latter case to evaluate the electronic

In our brevi tudv of atomic and mol lar tem Wstructure of atoms, molecules, and solids, which is known as
ourprevious study ot atomic a olecular SySIems, Wey initio or first-principles) quantum Monte Carlo (QMEY.

Emavigm\{[iiglgl\aﬂlf:tes%zg r(anﬁ(ér;sr:ummug eti:)%zg\err?]ﬁ:is I(EN C has attracted a lot of attention because of its highly
rec?Jrsive enerator with 8-31 order recursion (MR@aPh q accurate chemical description as well as moderate computa-
the Merse?me twister generator (MT1993Tere tested and tional cost that scales as linear to cubic with respect to sys-
: 9 L tem size, compared to other conventional quantum chemistry
compared with the RANLUX generator with five luxury lev- methods
els (RANLUX-[0-4]).4 It was found that the QMC energies g . .
Due to its statistical treatment, QMC evaluates any physi-

using the RANLUX generators consist with each other be- | it ied with a statistical b tandard

yond the statistical error bar (standard error in the QMC erf? qua? 1y acctompar:ne _Vl” _ats a |st|_cat ekrror_ atrh(s andar

ergy estimate). In contrast, MRG and MT19937 give consise-.rror)' N quantum chemistry, Interest 1S taken in the energy
difference between the two systems, e.g., molecular binding

tent results to within their error bars. This result may indi- ‘v that is the difference in the total enerav between th
cate that the statistical biases (systematic errors) in the Q ergy that 1s the difierence € fotal energy between the
molecule and its constituent atoms. In order to obtain numer-

simulations strongly depend on the luxury levels in the RAN-

LUX generators. In this study we made a detailed analysis bcfally meaningful results using QMC, the total energy differ-
QMC results with RANLUX-[0-4] for the simplest example in ence between the two systems should be at least larger than the

guantum chemistry, i.e., the hydrogen atom. We estimated &grresponding error bar by an order of magnitude. Since atyp-

ground state energy using the variational Monte Carlo (VM al quantum chemistry calculation requires so-called chemi-
method with a simple model trial wavefunction. The resultin al accuracy of about kga!/mol c 1'.6 mhartree) for the en-
VMC energies were compared with the reference energy th fay difference, the statistical error in the QMC energy should
is analytically evaluated with the same wavefunction as in th e~ 0.1 mhartree. &®

VMC simulations. In addition, we have first examined how A (Pseudo) random number generator (RRG)plays
the choice of time step in the VMC simulations affects statid" important role in any MC simulation, including QMC.

tical quantities such as the error bar of the VMC energy anidj "@s been reported that ‘good’ RNGs in the context of
correlation time. statistical test®?) are not necessarily good for some MC

In various fields Monte Carlo (MC) methctd are used simulationst?29 j.e., the RNGs give a systematic error larger

mainly for the following two purposes: (i) to simulate a SyS_than the statistical error. In practice, the statistical biases due

tem that has an intrinsic randomness and (ii) to solve a proB)- RNGs depend on not only RNGs themselves, but also MC

lem that is impossible or difficult to solve in either analytic Orappllcatlons which use the RNGs. In our previous study, we

standard numerical ways. In quantum chemistry, MC is avaih—ave found that this is the case for QMC simulations of atomic
' ’ and molecular systenis.

*Corresponding author, E-mail: kenta_hongo@mac.com The present paper is organized as follows: In Section
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we describe VMC algorithms focusing on where RNG is usedie may quantitatively evaluate such correlations in two ways:
and make a brief comment on RNGs, including the RANLUXexponential and integrated correlation times. The exponen-
generator. Numerical results and discussion are given in Sei@l correlation timer.,, is obtained from a relatiof’'(k) ~
tion Ill. SectionlV summarizes the present study. exp(—k/Texp) fOr k > 1, whereas the integrated omg; is

L defined as
Il. Variational Monte Carlo Method and Random

Number Generator Tint = i C (k). ®)
k=1

This section describes the VMC algorithm related only
to RNG, namely, the generation of random walks and thgy, large enough/, we obtain the true variance @, i.e.,
Metropolis accept/reject procedure. For a general and detailggy from a relation
description of QMC methods, it would be helpful to refer to
textbook® and review paper3.All the present calculations op, =06p, (14 27n), (6)
were performed using the CASINO cotfe.

many-electron wave functiot: tocorrelations reduces the number of statistically uncorrelated
samples from\/ to M /(1 + 27int)-
B[] - JdREL(R)|¥(R)|? Q- The method 065 data blocking is also available for estimat-
[dR|¥(R)]Z ing the_ error baf® In this method, we gather.successwe data
' points into blocks and average over the data in each block, and
whereR = (ry,...,ry) is a point in the configuration space then calculate the variance of the set of block averages. Pro-

of the N-electron system anfi; (R) = U~ (R)H(R)¥(R) vided that the block length is much greater than the correlation
is the local energy. ¥ = 1 for the hydrogen atom.) In VMC time between data points, the block averages are statistically
one adopts the trial wavefunctiohr(R) and evaluates the independent and an unbiased estimate of the mean is obtained.
expectation value with respect o (R) using the MC inte- We used the blocking method to estimate the error bar of the
gration scheme, i.e., generating a sequence of configuratio!C energy. In the present study we chose a block length of

{R,, :m =1,...,M} in 3N-dimensional space distributed 1000, which is two orders of magnitude longer than the corre-
according tol'2, using the the Metropolis algorithi# and av-  lation times (see Sectidii .3) and hence long enough for the
eraging the corresponding local energies: purpose of estimating the error bar correctly.

In the present study we adopt a trial wavefunction as
M
1 —Qar — T
W]~ = > EL(Rm) = (EL). @) Ur(r) = ae™" + (1 — e+ )
m=1

with a parametesr = 1.1.29 Although this form of the wave-
The Metropolis transition probability density is a Gaussiafunction contains the exact one £ 1) for the hydrogen atom,
distribution with variancer, wherer is the VMC time step the MC integration is meaningless since the local energy is
(dtvmc). constant. This model wavefunction detunes the exact one and
According to the central limit theorem, the variance of théxence the local energy;, can be a function of the position in
MC estimate ofE[V] is 63, /M, where the variance of the configuration space. In addition, this trial wavefunction auto-
function £y, (i.e. &%L) is given by matically satisfies the electron-nucleus cusp condition, which
prevents the local energy having a singularity at the electron-
e 1 M ) 5 nucleus coalescence and enables one to investigate systematic
OB, = 37 > [BL®Rm)?] = (EL)?, (3)  errors due to RNGs alone.
m=1 The RNG is used (i) to generate the trial move of config-

and hence an estimate of the size of the error bar (or Stay]r_ation and (ii) to perform its accept/reject procedure in the
dard error) on the MC estimate &¥] is £, /v/M. Note Metropolis algorithn?® In MC simulations the statistical bi-
that this relation holds if and only ifE;) is ermwn exactly. ases due to RNGs originate from mainly the autocorrelations

Actually the denominator in the variande is replaced with (©F Se€rial correlations) and biases due to non-uniformity of
M — 1, as shown in statistics texts, becad#® ) is in reality t_he. sampling pomt%? The former leads to an incorrect sta-
measured as a MC sampling mean on computers. tistical error bar which is smaller than the exact one, while

In the actual determination of statistical errors of the VMéhe latter introduces a systematic error in the mean value. For

estimates, however, we should take into account (serial) corrtg-e fOIrTerr]’%? ?Lock|ngb|;)rocedure d_cantlr)]e lljstfd t_o remo_\:je the
lations (or autocorrelations) between successive pdiRis } corretatiorr. € problem regarding the latier 1S consider-

: : : bly more difficult to resolvé®
enerated in the Metropolis procedure. Using the autocorr8* .
Esltion function P P 9 RANLUX has been a very popular RNG in the Monte

Carlo community, especially for computationally demanding

M—k physical/chemical problenfs.lts algorithm was derived by
D) Rm —(E ) Rm —(E . . .
C(k)= E (EL(Rom) <]\/‘L[>z(kLEQ k) = L>), (4) applying chaos theory to an implementation of the subtract-
m=1 ( ) Ok, with-borrow (SWB) generator, RCARY%:27 According to
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chaos theory, some random numbers are removed to destr 2
the serial correlations in the original RCARRY sequence, i.e.
given an integep (p > 24), one first take4 successive

RCARRY sequences and discagds 24 numbers, then takes 1 r

24 sequences, and so on. In his paper Liisthpeovided five $

p values, i.e.p = 24, 48,97, 223, and389, which correspond I . o
- o

to the "luxury levels" of RANLUX ranging)-4. Note that
SWB has been proven to be equivalent to an efficient imple
mentation of the linear congruential generator with a muct
longer period® This is the reason why SWB fails in some
randomness testd.

©RANLUX-0
-1 ORANLUX-4

E +497.3792 [mhartree]

We tested the convergence of the VMC energy with respec -2
to the Monte Carlo steps rangimgyic = 10° — 10'® (see 1.0E+08 1.0E+10 1.0E+12 1.0E+14 1.0E+16 1.0E+18
Fig. 1). The time step for the trial move (dtvmc) is deter-
mined such that the acceptance/rejection rati6.5. In the
present study, we obtained dtved).5 from preliminary sim-
ulations. We also show similar results using RANLUX-0 and™g- 1 VMC energy convergence with respect to the Monte
RANLUX-4 in order to understand how the choice of dtvmc Carlo steps. The energies are in units of mhartree and
affects the properties of a VMC calculation, i.e., the accep- Shifted by the reference energy4f7.3792 mhartree.
tance ratio, total energy, error bar, and correlation time.

Monte Carlo step

In practical VMC simulations, a subsequence is genefrable 1 Energy differences between evaluated VMC and
ated by taking every-th element from the original sequence, reference energiesAEyvyc = FEvumc — (—497.3792)
wherek depends on the system, in order to weaken the serial(mhartree)] and their error bars)(with RANLUX-[0-4]
autocorrelation. The subsequence can modify the original se-at Ny = 10'3. All energies are in units of mhartree.
guence. In this study, however, we did not consider such a

treatment because we intend to focus on the intrinsic proper- ABymc o
ties of the RANLUX generators. In order to consider intrinsic RANLUX-0 0.2375 0.0056
properties of a single RNG sequence, we did not perform a RANLUX-1  —0.0033 0.0066
parallel VMC calculation, which may hide such properties. RANLUX-2  —0.0045 0.0056
RANLUX-3 0.0105 0.0065
lll. Results and Discussion RANLUX-4  0.0066 0.0062

1. Sampling Bias

The VMC ground state energies of the hydrogen atom with: COmputational Costs
the trial wavefunction in Eq.7) were evaluated using differ- ~ Figure 2 shows the computational (CPU) times in the
ent RANLUX generators. The reference energy-df7.3792 RANLUX routine to generate each RANLUX sequence as a
mhartree was analytically calculated with the same wavefuninction of p (see Sectiorl). It is obvious from this figure
tion as in VMC. Figurel highlights the VMC energyevyc  that the CPU time is approximately proportionaltowhich
convergence with respect to the Monte Carlo stdfg- for IS consistent with a previous studlyThe fraction of time used
RANLUX-0 and RANLUX-4. Comparing the energies atby the RANLUX routine compared to the total VMC routine
Nume = 10'3 and10'%, it is found that the VMC energies is about 1%. In the present case the difference in the total
with RANLUX-0 and RANLUX-4 atNyic = 10'3 converge CPU time between luxury levels was negligible, but it would
to their own limits. Within one error bar{, RANLUX-4  be more significant (an order of hours) for larger systems in
gives the same VMC energy at eveli:c, while the VMC ~ actual QMC simulations, which take a couple of days.
energies with RANLUX-0 differ atVyy¢ = 10'° and10'3,
though they coincide withio. Consequently, we may adopt 3. Correlation Time in QMC
the VMC energy afVyic = 10! as the converged one. Table 2 gives a list of the integrated correlation times de-

Table 1 reports the VMC energies and their error pardined in Eq. 6)_and_ their error bars. No significant difference
with RANLUX-[0-4] at Nye = 10'3. RANLUX-1 and Of the correlation time between the RANLUX generators was
RANLUX-2 give the same energies as the reference e|t_pund, similar to results reported in our pre\_/i(_)us sthidy.is
ergy within their o’s, respectively, while RANLUX-3 and likely that. the autocorrelation does not explicitly relate to the
RANLUX-4 within their 20’s, respectively. On the other Systematic error.
hand, RANLUX-0 give the VMC energy outsid®o. It is
evident that RANLUX-0 gives a systematic error arising fronf+ Time-Step Dependence in VMC
a poor quality RNG. This result seems unsurprising since Figure 3 highlights the VMC time step (dtvmc) depen-
RANLUX-0 is theoretically equivalent to a notorious lineardence of various quantities in a VMC simulation: (a) accep-
congruential generator, as mentioned in Seciion tance ratio in the Metropolis procedure, (b) VMC energy, (c)
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Fig. 2 CPU time [sec] for each RANLUX, plotted as the de- B ) .
pendence op-parameter controlling the luxury level, e.qg., 2 02 o " o, R
p = 24 indicates RANLUX-0 and so on. See Sectibn z o % g szl
: e
Table 2 Correlation times and their error bars with 02
RANLUX-[0-4]. All times are given in units of Monte 04 | ! ;mgig
Carlo steps. o ’
Correlation time  Error bar 00001 0001 001 Ol 1 10 100
RANLUX-0 17.80 0.82 008 el
RANLUX-1 18.43 0.87 (c) -
RANLUX-2 17.92 0.84 0.06 © RANLUX.0
RANLUX-3 17.90 0.84 = 0 RANLUX-4 N
RANLUX-4 17.95 0.84 £ .
§ 0.04
§ [+]
error bar in the evaluation of the VMC energy, and (d) correla- g 0.02 ° °
tion time in the evaluation of the VMC energy. The VMC cal- ® 0 o s © g
culations were performed with RANLUX-0 and RANLUX-4 0.00
at Nyic = 10'3, i.e., the number of Monte Carlo steps is com- 0.0001 0001 001 0.1 1 10 100
mon to every VMC simulation with different values of dtvmc. 10000 divme [1/au ]
As shown in Fig. 3(a), the acceptance ratio abruptly decreases (d)
with a larger dtvmc. dtvme= 0.5 gives an acceptance ratio
of ~ 50%. Figure 3(b) shows that the VMC energies with glooo T © RANLUX-0
RANLUX-0 strongly depend on the values of dtvmc, whereas 2 B RANLUX-4 i
those with RANLUX-4 have a relatively weak dependence. It § i i
is found from Figs. 3(c) and (d) that the error bars and cor-  § Z
relation times are a minimum at dtvme 0.5, which corre- £ 100 )
sponds to an acceptance raticb69%. This result implies that TE ? . ’
a 50 % acceptance ratio leads to the most efficient VMC sim- < ! "
ulation. Although in the Monte Carlo community the above 10
results have been heuristically determined as approximately 0.0001 0001 001 01 1 10 100
optimal time step choices, the theoretical reason for this has duvme [lau ]
not been investigated and discussed, especially in the first-
principles QMC community, so far as we are aware. Fig. 3 VMC time step (dtvmc) dependence of (a) accep-
tance ratio, (b) VMC energy, (c) error bar (error bar), and
IV. Summary (d) correlation time for RANLUX-0 and RANLUX-4 at
Nyie = 1013,

We estimated the ground state energy of the hydrogen atom
using the variational Monte Carlo (VMC) method with a sim-
ple model trial wavefunction and the RANLUX random num-
ber generator with five luxury levels (RANLUX-[0-4]). The with RANLUX-3 and RANLUX-4 within their2¢’s. On the
VMC energies with RANLUX-1 and RANLUX-2 were con- other hand, it was found that RANLUX-0 gives an evident
sistent with the exact energy within theiis, whereas those systematic error of aboui.2 mhartree in the evaluation of
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