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We present a novel spectrum unfolding code, Maximum Entropy and Maximum Likelihood Unfolding Code 
(MEALU), based on the maximum likelihood combined with the maximum entropy method, which can determine a 
neutron spectrum without requiring an initial guess spectrum. We present the basic theory, limitations and 
assumptions built into the implementation. The performance is checked through an analysis of mock-up data. The 
results are compared with those obtained by conventional methods for neutron spectrum unfolding. 
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I. Introduction1

The inverse problem of determining the radiation source 
information from measured detector readings has been 
investigated by many researchers1-5). However, it remains 
unclear which method achieves high accuracy for unfolding 
results, especially in underdetermined problems. In addition, 
most spectra unfolding codes require an a priori spectrum (i.e. 
guess) to start the unfolding procedure for an unknown 
spectrum. The accuracy of the resulting spectrum strongly 
depends on the subjectively chosen guess spectrum.  

A new spectrum unfolding code is currently under 
development, based on the maximum likelihood combined 
with the maximum entropy method. The code is called the 
Maximum Entropy and Maximum Likelihood Unfolding 
Code (MEALU). A critical advantage of the MEALU method 
is that it allows evaluation of the uncertainty and a 
determination of the neutron spectrum without an initial 
guess spectrum. Maximum likelihood combined with 
maximum entropy has been applied to the unfolding of 
neutron spectra, notably in the study of Itoh and Tsunoda1).
However, the MEALU formulation is different from previous 
applications in the way it combines maximum likelihood and 
maximum entropy. 

It is important to estimate the error for unfold neutron 
spectrum as well as the integral quantity. For the sensitivity 
and propagation of uncertainties of the MEALU solution, we 
used the Monte Carlo technique to consider the measurement 
error and the response function uncertainty. We checked the 
performance of the MEALU technique by analyzing mock-up 
data. The results from measured data were also compared 
with those obtained by conventional method for neutron 
spectrum unfolding.  
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II. Inverse Problem in Radiation Measurement 
The M kinds of detector response ci are related to the 

irradiated neutron spectrum (E) by a Fredholm integral 
equation of the first kind; 
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where Ri(E) is the response function of the i-th detector. The 
problem for neutron spectrum unfolding is to estimate (E)
satisfying Eq.(1) with the measured data ci and the well 
evaluated data of Ri(E) within reasonable uncertainty. The 
usual approach is to break the energy E into discrete 
intervals of N groups and rewrite Eq. (1) in sum (or matrix) 
notation as 
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where Rik is the average value of Ri(E) and k is the flux in 
the k-th energy interval group. In general, since the number 
N of energy group is larger than the number M of measured 
detector responses, the simultaneous linear Eq. (2) results in 
an indefinite problem mathematically in the case of the foil 
activation method and multisphere neutron spectrometer 
(Bonner Ball).  

In the underdetermined problem, the unfolding code and 
procedure have the following requirements: 

Stability of solution (easing the effect of 
measurement error) 
Uniqueness of solution (only one valid solution)  
Rejection of unphysical solutions (guarantee of a 
positive solution)  
Error estimation (error propagation from 
measurement, response function and numerical 
analysis).

To solve such problems, many researchers have 
investigated and developed numerous unfolding codes such 
as STAY’SL2), FERRET3), NEUPAC4) and MAXED5).
These codes, however, require the preparation of a 
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group-wise initial guess spectrum with their covariance 
matrix as a priori input information, and sometimes involve 
very complicated calculations to obtain physically 
reasonable solutions when dealing with ill-conditioned 
matrices and/or assuming nonlinear probability functions 
such as lognormal distributions. 

II. The MEALU Algorithm 
1. Definitions

Taking the expectation of both sides of Eq. (2) and 
denoting the total number of neutrons incident on the 
detector by , we have 
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Where /ca , (4) 

/p , (5) 

, (6) 

1p . (7) 

The expectation of a variable is denoted by putting it in 
brackets. 

2. Derivation of New Method 
For the vector p being the probability, the quantity 
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is known as Shannon’s information entropy. Based on the 
maximum entropy method, we choose the energy 
distribution p which maximizes Eq. (8). 

On the other hand, the likelihood relevant to the Poisson 
statistics of neutron detection6) is given by the following: 
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In this study, we select p that maximizes the linear 
combination of the entropy and the likelihood. This new 
algorithm is a modification of that of Itoh and Tsunoda1).

The combination of entropy and likelihood, S, is given by 
LHS . (10) 

The Lagrangian associated with the maximization of Eq. 
(10) with the constraints given by Eq. (3) and (7) is of the 
form 
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where  and 0 are Lagrange multipliers. Differentiating Q
with respect to <ci> and pk, and setting the result equal to 

zero givens the followings: 
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We redefine ’ as  
ii )1(' . (14) 

Finally, we obtain the set of (N+M) equations to be solved in 
terms of ’i:
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According to Eq. (17), the number of ’i agrees with the 
number of ai for the underdetermined and overdetermined 
problems. Although this paper focuses on the 
underdetermined problem, the MEALU method can also be 
applied to the overdetarmined problem without 
reformulation.  

The problem now is to solve the nonlinear system (17) for 
the vector <a> included in ’. For this we applied Newton’s 
method. The unfolded spectrum under the present method is 
not affected by an arbitrary choice of initial guess, but a 
starting point of ’ is required in the iterative scheme. We 
employed all zeros as this starting value, which corresponds 
to a flat spectrum.  

The solution  was calculated from p multiplied by :
p . (18) 

3. Error Estimation 
In the current problem, it is difficult to apply an error 

propagation estimation because Eq. (17) is transcendental. 
We have thus considered the measurement error and 
response function uncertainty using the Monte Carlo 
technique in a statistical sense for error propagation studies. 

Numerous sample detector responses c(m) are generated at 
random from a probability density around a measured 
detector response ci, where (m) mean the m-th trial. Similarly, 
sample response functions R(m) are generated around the 
uncertainty of the response function. 
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c(m) and R(m) are then input into the MEALU and (m) are 
output by the MEALU: 

)()()( , mmm cRMEALU . (21) 
Then, the variance for each neutron group can be 

estimated as follows:  
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In a similar way, the integral quantities and their variances 
can be formulated.  

III. Numerical Test
We created a prototype MEALU program and checked its 

performance through an analysis of mock-up data.  
A problem with five group neutron fluxes unfolded from 

three detector responses was prepared as shown in Table 1.
In this test, the total neutron flux ( ) was assumed as a given 
parameter. 

Table 1  Parameters for Test Problem 
Response Function K

R1,k R2,k R3,k
k,exact

1 2 0 0 8 
2 4 3 1 13 
3 3 2 2 9 
4 3 2 4 5 
5 2 2 4 2 
ci 114 71 59 37 

IV. Results and Discussion
1. Unfolded Results 

Table 2 and Fig. 1 show the unfold spectrum obtained 
from the MEALU prototype code. The detector response 
using the unfold spectrum is also shown in Table 3. In this 
case, the MEALU unfolding result is in good agreement with 
the exact value in spectrum shape and quantity without an 
initial guess spectrum. The re-fold detector responses using an 
unfold spectrum also agree with the exact value.  

Table 2  Unfold Spectrum      Table 3  Unfold Response 
k unfold exact i Runfold Rexact

1 8.3 8 1 112.7 114 
2 13.5 13 2 70.7 71 
3 7.4 9 3 59.1 59 
4 4.5 5    
5 3.2 2    

2. Error Estimation 
Table 4 and Fig. 2, and Table 5 and Fig. 3 show the results 

of error estimation by measurement error and response 
function uncertainty, which are obtained after 10000 trials of 
random walk, respectively. The Monte Carlo technique 
provided the probability density, shown in Fig. 4. The 
originals were restored within 2  at each energy bin. 

Table 4  Result of Error Estimation by Measurement Data 
k unfold unfold (1 ) unfold (%) exact
1 8.3 2.4 28.4 8 
2 13.5 3.1 23.3 13 
3 7.4 1.1 15.4 9 
4 4.5 3.2 71.6 5 
5 3.2 2.9 90.2 2 

Table 5  Result of Error Estimation by Response Function 
Uncertainty 

k unfold unfold (1 ) unfold (%) exact
1 8.3 0.12 1.5 8 
2 13.5 0.16 1.2 13 
3 7.4 0.08 1.1 9 
4 4.5 0.24 5.3 5 
5 3.2 0.23 7.0 2 
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Fig. 2  Error Estimation by Measurement Error 
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Fig. 1  Unfold Spectrum 
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Fig. 3  Error Estimation by Response Function 
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3. Comparison with Conventional Method 
Table 6 shows the comparison of the unfold spectrum and 

its estimated error obtained by the MEALU and J-1 methods 
from the same detector responses, response functions and 
uncertainties. Both results are in good agreement 
quantitatively within the estimated uncertainties. 

Table 6  Comparison with Conventional Method 
MEALU J-1 Method k

unfold unfold (1 ) unfold unfold (1 ) exact

1 8.3 2.3 10.3 ( 8 )* 2.9 8 
2 13.5 3.1 10.3 ( 13 ) 2.2 13
3 7.4 1.2 8.2 ( 9 ) 2.9 9 
4 4.5 3.2 5.2 ( 5 ) 2.5 5 
5 3.2 3.0 5.1 ( 2 ) 2.5 2 
* The result in case of c(1 )=0%

V. Conclusion 
A new spectrum unfolding code, MEALU, is currently 

under development based on the maximum likelihood 
combined with the maximum entropy method. We have 
demonstrated typical unfolding results using mock-up data. 
Compared with conventional methods, the new method has 
the following potential advantages: 

It is not necessary to prepare an initial guess 
spectrum and covariance data as a priori 
information. 
A positive solution is guarantied.  

We applied the Monte Carlo method to estimate the posterior 
probability distribution of the solution and obtained a 
reasonable error. In the future, the performance will be 
checked through analyses of mock-up data for several 
detector systems. The results from measured data will also 
be compared with those obtained by conventional methods 
for neutron spectrum unfolding.  
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Fig. 4  A Posteriori Probability Density of Group Neutron Flux k
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