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A statistical reappraisal of models is presented for the prediction of resuspension with the assessment of 
uncertainty, using the historical data reported by Maxwell and Anspaugh (2011). A model, conveniently 
called “hybrid scale model”, was applied to unify the power law and the exponential function, which are often 
used in conventional predictive models of resuspension factor (Sf), and also to reflect the bounded data of Sf. 
The hybrid scale model has been proven to be well fitted to the data of resuspension factor with the improved 
assessment of uncertainty as a linearized model between observation time and resuspension factor. 
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1. Introduction1

After the Fukushima Daiichi nuclear accident, the
resuspension factor (Sf) has been quite often used to 
calculate the inhalation dose from the resuspended 
nuclides of surface contamination. To attain the realistic 
calculation, we must consider the strong dependence on 
time in the resuspension factor. Maxwell and Anspaugh 
[1] comprehensively reviewed the predictive models and 
revised their former model of double exponential for 
prediction of resuspension (2002) [1], to be a more 
accurate predictor of Sf at early times (observation time t 
< ∼100 d) and a practical model of analytical solutions.  

Most of the models are given as a function of ln(Sf)
 = 

α + β⋅g(t) whereα,β are a constant, and g(t)= ln(t) or t 
of time. Maxwell and Anspaugh showed a good fit of 
ln(Sf)

 vs. t for t < 100 d but ln(Sf)
 vs. ln(t) for t > 100 d. 

However the hybrid function hyb(x) = x + ln(x) [2] is 
feasible for the predictive model over the whole period, 
putting g(t)= hyb(τ⋅t) with a positive constant, τ (d-1). 

The range of Sf is reported from 10-2 to 10-10 m-1 [3] or 
10-5 to 10-9 m-1 [1]. Thus the function ln[(Sf -

 a) / (b - Sf)] 
or hyb[ν⋅(Sf -

 a) / (b - Sf)] is feasible for both bounded 
data a < Sf <

 b where ν is a constant. The value of lower 
boundary, a, should reflect the argument that Sf cannot 
have been greater than 7×10-11 or 2×10-10 m-1, 15 or 18 
years after deposition, respectively [4]. 

In this paper models are proposed for the prediction of 
resuspension to attain a linear relationship between time 
t and Sf, both transformed by some functions, to the data 
obtained from the reference [1]. The uncertainty is 
evaluated to provide the prediction intervals of Sf based 
on the normality of residual errors. 
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2. Method

2.1. Distribution analysis on homogenous sampling 

The statistical homogeneity of time t and Sf within the 
dataset is important to properly estimate the time 
function of resuspension factor against the distortion due 
to not evenly sampling in time and conditions. 

The distribution of time t is analyzed by the hybrid 
lognormal (HLN) distribution that hyb(τ⋅t) is normally 
distributed with the mean μ and the variance σ2, where τ 
(d-1) is a constant, adjusting between the power law and 
the exponential function in observation times. 

Parameters τ, μ, and σ are estimated to minimize the 
sum of squared errors (SSE) Σεi

2 or to maximize the 
coefficient of determination (R2) to sorted data {ti |

 i = 1, 
n} in the equation, hyb(τ⋅ti)

 = μ + σ⋅zi +
 εi, where the ith 

smallest zi is given by the normal distribution function 
Φ(zi) ≈ (i - 3/8) / (n + 1/4) [5] and n is the number of data. 

The distribution of Sf is analyzed by the extreme value 
type I distribution function, F(u) = exp[-exp(-u)], putting 
the equation, hyb[ν⋅(Sfi

 - a)] = μ + η⋅ui
 + εi, conveniently 

called “hybrid Freshet 4-papameter (HF4) distribution,” 
where ui is given by F(ui)

 ≈ (i - 0.3175)/(n + 0.365) but 
F(u1)

 = 1 - 0.51/n, F(un)
 = 0.51/n [6]. Parametersν, a, μ, and 

η are estimated by Σεi
2 → min or R2→ max on data {Sfi}. 

HF4 is preferable based on AIC = n ln(SSE / n) + 2θ (θ: 
the number of parameters), due to the extremely large 
variation of Sf over the whole period (0.04 ∼ 2000 d).  

However, we also used the lognormal distribution to 
data of Sf in each of divided observation periods. 
Distributions of Sfj among the jth period of 22 time 
intervals properly selected were analyzed with the time 
function of μ and σ to obtain the lognormal (LN) 
distribution, ln(Sfj)∼ N(μj,σj

2), (j = 1 ∼ 22). 
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2.2. Relationship analysis between time t and Sf 

The best linearity between x and y is essential to 
assess the uncertainty of fitting the model to data. The 
linear relationship is well known about data plotted on 
normal, two types of semi-log, and log-log section 
papers, but data {t, Sf} are often not fitted with a straight 
line on the four kinds of popular section papers. 

The hybrid function hyb(x) affords unification to the 
four kinds of popular section papers because the hybrid 
scale is continuously connected between the log scale 
and the linear scale shown as in Figure 1 and both axes 
in hybrid scale provides nine types of section papers. 

10-4 10-3 10-2 10-1 1051 1510-4 10-3 10-2 10-1 1051 1510-4 10-3 10-2 10-1 1051 15

Figure 1.  An example of hybrid scales graduated in x on the 
linear scale of y via the function y = hyb(x). 

Table 1. Nine types of linear relationships on hybrid scale. 
Linear-Log 

y=α+β⋅ln(x) 
Linear-Hybrid 
y=α+β⋅hyb(x) 

Linear-Linear 
y=α+β⋅x 

Hybrid-Log 
hyb(y)=α+β⋅ln(x) 

Hybrid-Hybrid 
hyb(y)=α+β⋅hyb(x) 

Hybrid-Linear
hyb(y)= α+β⋅x

Log-Log 
ln(y)=α+β⋅ln(x) 

Log-Hybrid 
ln(y)= α+β⋅hyb(x) 

Log-linear 
ln(y)= α+β⋅x 

The hybrid scale (HS) model is defined as nine types 
of linear relationships on the section papers derived from 
applying the hybrid scale to both axes of x and y (see 
Table 1). For the prediction of resuspension the HS 
model is applied variously, e.g., x=τ⋅t and y=ν⋅Sf. 

The relationships are examined as follows; 
Preliminary analysis of piecewise data by period 

hyb[ν⋅{(-μj)
 - a}/{b - (-μj)}] = α + β⋅hyb(τ⋅tj)

 + εj, (1) 

σj =
 α + β⋅hyb(τ⋅tj)

 + εj (2) 

hyb[ν⋅(Sf jgm
 - a)] = α + β⋅hyb(τ⋅tj)

 + εj,  (3) 

where Sfjgm is the geometric mean exp(uj) of Sfj, and τ, ν, 
a, b, α and β are model parameters to be estimated by 
Σεj

2 → min or R2 → min for data {tj, μj}, {tj, σj}, or {tj, 
Sfjgm}, (j = 1 to 22), over 22 divided periods;  

Main analysis of all data over whole period 
ln(Sfi), hyb[ν⋅(Sfi - a)] or hyb[ν⋅(Sfi - a)/(b - Sfi)] 

  = α + β⋅hyb(τ⋅ti)
 + εi,     (4) 

where τ, ν, a, b, α and β are model parameters to be 
estimated for data {ti, Sfi}, (i =1 to 295), to minimize Σεi

2 

or to maximize R2, via selecting the smaller AIC model. 

2.3. Uncertainty analysis on estimated functions Sf(t) 

Attaining the best linearity so that the residual errors 
should be normally distributed as much as possible, we 
can use the prediction intervals (PI) for a future value Y, 
given explanatory level x=hyb(τ⋅t), assumed the known 
values of τ, ν, a and b calculated in advance, as follows: 
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where ŷ is the estimate of the response variable (e.g. yi =
 

hyb[ν⋅(Sfi -
 a)] or hyb[ν⋅(Sfi-a)/(b- Sfi)]), tα/2 is lower and 

upper prediction levels of the student’s t distribution 
with the degree of freedom n – k - 1 for k parameters 
except for intercept, s is the residual standard error, x  
is the mean of explanatory variable xi = hyb(τ⋅ti).  

Parameters (τ, ν, a, b) estimated nonlinearly should be 
considered as factors of influencing the uncertainty. This 
paper, however, considers their influence on the degree 
of freedom only because of avoiding the complexity. 

To compare with the estimation of uncertainty by 
Maxwell and Anspaugh [1], α'/2 = 15.87% is calculated, 
which corresponds to one sigma of the normal 
distribution, while α/2 = 2.5% is widely used.  

3. Results

3.1. Distribution analysis on homogenous sampling 

Using 295 data read by eyeball as well as possible 
from the several figures, on which data (n >300) from 
0.04 to 2000 d were plotted variously by Maxwell and 
Anspaugh [1], we identified the probability distribution 
to fit well to all data of observation time t and Sf. 

Figure 2 shows that observation time t is hybrid 
lognormally distributed, where lognormally distributed 
at early times (t < 100 d), and normally distributed for 
time greater than 100 d. Figure 3 shows that Sf follows 
the HF4 distribution, where the Frechet 3-parameter 
distribution for Sf

 <∼10-5 m-1 but the extreme value type I 
distribution for Sf >∼10-5 m-1. 

Although these 295 data are probably not random, we 
could find a statistical homogeneity in terms of 
observation time (t) and resuspension factor (Sf). 
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Figure 2.  Normal probability plot of data t (d). From left, log 
plot, hybrid plot and linear plot. 
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Figure 3.  Extreme value type I probability plot of data Sf 
(1/m). From left, log plot, hybrid plot and linear plot. 

3.2. Relationship analysis between time t and Sf 

(a) Preliminary analysis on piecewise data by period 
Resuspension factors Sfj during the jth period were 

proved to be expressed as ln(Sfj)∼ N(μj,σj
2), (j = 1 to 22). 

The degree of Rj
2 for jth period is more than 0.93, except 

two periods where Rj
2= 0.70, 0.90. 

In Figure 4 the parameter μj of LN decreases by time 
after deposition along the straight line (left panel) or the 
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curve (left panel) of the HS model given as follows: 

[ ].005.0hyb453.0975.0
76.21

295.9
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(6)

In Figure 5 the parameter σj of LN is less dependent 
on time after deposition despite the large variation but 
can be fitted as σ = 1.473 - 0.137 hyb[0.005t], which is 
similar to 1.44 = ln(δ) shown as the uncertainty of Sf(t) 
in the reference [1].  
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Figure 4.  Hybrid plot of μj vs. geometric mean time in the jth 
period. Left: hybrid-hybrid plot, Right: semi-log plot. 
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According to the lognormality of Sfj within each of 
periods selected, we can obtain the time function Sf(t), 
shown on the left panel and the right panel of Figure 6, 
respectively, by substituting ln(Sfjgm) for μj in Eq. (1) or 
by fitting Eq. (3) to data Sfjgm =exp(μj). Both results of 
Sf(t) are similar for t < 1500 d. The curve of Sf(t) on the 
right panel is given by hyb[66500(Sf − 5.25×10-10)]= 
−8.460 − 1.373 hyb[0.001 t], where R2= 0.9722. 
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Figure 6.  Curves of Sf(t) calculated from LN fit by period. 
Left: μj=ln(Sfjgm) in Eq.(1), Right: fit Eq.(3) to Sfjgm=exp(μj). 

(b) Main analysis of all data over the whole period 
For the improved assessment of uncertainty, we 

should consider the individual variation of 295 data 
{ti,Sfi}: 0.04≤ t ≤2000 d and 1.7×10-10≤ Sf ≤ 1.75×10-4 m-1. 

First, ln(Sf)∝ τ⋅t + ln(τ⋅t) or ln(Sf)∝ hyb(τ⋅t) is derived 
as Eq. (4), corresponding to the reference [1] “ln(Sf) ∝ 
ln(t) at early times (<100 d) and ln(Sf)∝ t at long times 
(>100 d). In fact, the hybrid lognormality of observation 
times in hyb(τ⋅t) is shown in Figure 2. 

Second, it is natural to consider some upper and lower 

constraints on Sf, a<Sf <b: 10-5 to 10-9 m-1 [1], 10-2 to 
10-10 m-1 [3], ≤7×10-11 or ≤2×10-10 m-1 for 5475 d or 
6570 d [4], respectively, etc. Available data of Sf for 
times (>1000 d or <10 d) is, however, a few. Thus the 
lower limit a is selected to be 1.5×10-10 m-1 that is less 
than the minimum 1.7×10-10 m-1 of 295 data available. 
The upper limit b, however, can be neglected for the 
moderate constraint as hyb[ν⋅(Sfi -

 a)] in Eq. (4) due to 
the characteristics of hybrid scale, while b should be 
needed for the strong constraint as hyb[ν⋅(Sfi -

 a)/(b -Sfi)]. 
Figure 7 shows that the HS model of Eq. (7) is well 

fit to 295 data, scattered along a straight line on the left 
panel, except two points (t=0.04 d, Sf=1.75×10-4 m-1, 
t=56 d, Sf=5×10-10 m-1), where R2 is 0.7314: 

hyb[66500(Sf − 1.5×10-10)] 

= −8.36 − 1.40 hyb[0.001t].  (7) 

The curve on the right panel in Figure 7 is very similar 
to both curves in Figure 6 for <1000 d but the 95% 
prediction band (±2.5% PI) is wider than those in Figure 
6 for t >1 d. As the prediction interval includes the 
contribution due to individual variation of data, the 295 
data results in the larger uncertainty of random errors. 

Maxwell and Anspaugh [1] selected the upper limit 
10-5 m-1. If such a strong upper constraint is possible, 
hyb[ν(Sfi-a)/(b-Sfi)] in Eq. (4 ) will be applicable. In fact 
it works. We, however, need more data at quite early 
times to confirm the preference of hyb[ν(Sfi- a)/(b -Sfi)]. 
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Figure 7.  Hybrid plot of Sfi vs. ti (i=1 to 1,295). Left: hybrid 
-hybrid plot, Right: log-log plot. 

3.3. Uncertainty analysis on estimated functions Sf(t) 

The uncertainty analysis of Sf should be based on the 
significant factors as discussed in WASH-1400 [4], 
IAEA-TECDOC-647 [3], etc. This paper, however, 
focused on the statistical aspect of it practicably. 

According to the classical equation for simple linear 
regression, Eq. (5) provides the adequate PI for a future 
response y = hyb[ν⋅(Sfi - a)], given an explanatory level x 
= hyb(τ⋅t), where τ is assumed known as parameters 
estimated in advance. 

In Figure 4 or 5, the 68% confidence band (CB) was 
constructed as the ±15.9% PI for the plots linearized on 
the left panel, and the ±15.9% PI on the right panel were 
simply mapped from the ±15.9% PI on the left panel, to 
avoid the complexity. The 15.9% PI is due to the small 
size of data {tj, Sfjgm}.  

In Figure 6, the 68 % CB of Sfjgm on the left panel was 
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simply mapped from one on the right panel of Figure 4 
as exp(±15.9% PI) but that on the right panel was simply 
mapped from the 68 % CB of the linearized plots by 
fitting Eq. (3) to data Sfjgm = exp(μj). Similarly the 95% 
CBs were shown as the ±2.5% PI on both panels. 
Despite the different methods to obtain Sf(t) via Sfjgm, the 
confidence band on the right panel is narrower than one 
on the left panel. In Figure 7, the 95% CB of 295 data {ti, 
Sfi} on right panel was constructed in the same way by 
simply mapping the ±2.5% PI for the plots linearized on 
the left panel. 

The uncertainty of Sf(t) based on data {tjgm, Sfjgm} is 
explicitly smaller than that based on all data {ti,Sfi}. The 
former uncertainty (piecewise data) is comparable in 
magnitude to the uncertainty in the reference [1] as the 
±15.9% PI (nearly ±one sigma) for ∼100 to ∼200 d but it 
is roughly 1/3 at 100 d, 1/4 at 200 d and 1/10 at 500 d of 
the latter uncertainty (all data). Thus it is important to 
improve the uncertainty assessment. 

Historically various models [1, 3, 4] have been 
proposed for Sf(t) as shown on the left panel of Figure 8. 
Among models the latest one is the improved version of 
the double exponential model [1] (right panel, Figure 8), 
which is within the painted area of data measured in 
Europe after the Chernobyl accident on the left panel. 
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Figure 8.  Conventional models of Sf(t). Left: various models, 
Right: the improved model of Maxwell and Anspaugh [1]. 

The double exponential model has been derived based 
on the homogenous data in time divided into t < 100 d 
and t > 100 d. The statistical homogeneity of time t and 
Sf, however, has been proved here by the HLN and HF4 
distributions, and then we can estimate a predictive 
models of Sf(t) on all 295 data without piecewise 
analysis to improve the assessment of uncertainty. 

In general as the uncertainty assessment strongly 
depends on the judgment of experts who know the 
details of resuspension factor and regulatory practice, it 
is important to consult the original publications to ensure 
that the way the parameter values were originally 
obtained is compatible with they are to be used in 
assessment calculations, as recommended by IAEA [7]. 

The value of Sf =10-6 m-1 is widely used because it is 
considered to be the upper bound assuming weathered 
deposition [8]. The latest IAEA report [7] summarizes 
“in the first days and months after deposition, the value 
of Sf generally ranges between 10-5 m-1 in residential 
areas, on sites undergoing cleanup operations and on 

arid sites, and 10-6 m-1 on rural sites.” 
Therefore the reappraisal of Sf(t) is expected for data 

newly available from the recent nuclear accident. Then 
the hybrid scale model can be also used in various ways 
of data analysis as shown here. 

4. Conclusion

In this paper, a linearized model was presented for
predicting the resuspension factor (Sf) by applying the 
hybrid scale (HS) model [2] to the historical dataset [1]. 
The HS model with 5 parameters was found to fit well to 
the data of Sf over the whole observation times due to 
the smaller AIC (the model selection criteria) of 325.22 
for this model, while it is 383.93 as estimated for the 
latest conventional model with 5 parameters [1]. The HS 
model demonstrated to provide the prediction intervals 
for a future value of Sf over the observation period so 
that those should reflect the dataset more realistically. 

The HS model can be applicable for analyzing 
additional data to be obtained in studies on the 
Fukushima Daiichi nuclear accident. 
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