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Handling of high resolution imaging data for usage in Monte Carlo calculations 
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This paper discusses the handling of high resolution imaging data in Monte Carlo radiation transport 
algorithms. A solution for the necessary reduction of the size of the anatomical data is presented. It is 
discussed by means of memory reduction, influence to calculation performance and possible inaccuracies. 
Examples of calculated dose distributions are shown. 
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1. Introduction1

Imaging data, e.g. from Computer tomography (CT)
and Positron Emission Tomography (PET), gains more 
and more importance at the dose estimation for patients 
in the oncologic treatment [1-2]. These data are used in 
nuclear and radiotherapeutical medicine for individual 
treatment planning and for dose verification, 
respectively. Furthermore, in radiobiological studies 
using animal models and for the post exposure dose 
estimation in radiation protection, these data can provide 
more reliable results than those achieved using 
conventional dose estimations like dose point kernels 
and S-values algorithms (e.g. see [3]).  

Together with the progress of radiation detection 
systems and reconstruction methods, imaging data with 
enhanced spatial resolution and imaging space becomes 
available. It enables the identification of small 
anatomical structures and an exact description of the 
organ shapes. But also its size increases which pose a 
challenge for dose calculation and treatment planning 
systems. A reduction of the data size would be useful. 
But even taking into account that the real physical 
spatial resolution of the imaging device doesn’t coincide 
with the discretisation size of the imaging data, 
algorithms simply averaging over several imaging pixels 
always result in a loss of information. 

For the usage in radiation transport algorithms in 
radiobiology and radiation protection there are high 
resolution computational phantoms available, like the 
DigiMouse with 2x107 [4-5], the Visible Human with 
2x107 [6] or the VIP-man with 3x109 tissue voxels [7]. 
Also here the development of generalised anatomic 
voxel phantoms provides more and more detailed data. 

Hence, an algorithm keeping the spatial resolution in 
regions where it is necessary and reducing it elsewhere 
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would be very helpful concerning the memory 
requirement in run time and the storage space as well as 
the time consuming handling of such huge data sets in 
the preparation process. 

2. Methods

2.1. Sources of geometric data 

For the simulation of radiation transport, a description 
of spatial inhomogeneities of the material is necessary to 
describe the differences of the interactions correctly. 
This can either be done using geometric figures [8] or 
real measuring and imaging data. In medical 
applications, Computer Tomography (CT) or magnetic 
resonance tomography (MRT) can be utilised to 
characterise the anatomy [9]. Modern systems are able 
to achieve high spatial resolutions and a very detailed 
image space, like the Hounsfield unit scale. This data is 
predestined for applications like individual treatment 
planning. 

Because this data is only valid for an individual, 
generalised statements required e.g. in radiation 
protection are difficult to derive. For such tasks, so 
called voxel phantoms are in use. Each of them 
represents a particular group of individuals like children 
of a certain age or gender dependent adults. They have a 
much smaller imaging space, normally representing only 
the discrete organ definition of the different volume 
elements. 

For both sources, the provided imaging space doesn’t 
meet the requirements for the usage in radiation 
transport codes. Hence, an increase of information in 
general is necessary for instance to apply independent 
regions of interest, weight window techniques, average 
dose estimations, local radiation transport flags as well 
as the separation of material properties like different 
chemical compounds and inhomogeneous mass densities 
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in one organs. So, besides the increase of experimental 
spatial resolution also advanced Monte-Carlo methods 
result in a large data volume that has to be treated. 

2.2. Algorithm for geometry handling 

In principle, there are two approaches for the 
treatment of the geometric description in radiation 
transport depending on the sampling algorithm used for 
the particle step length. The first is based on the passage 
through the surfaces of the current volume [10]. The 
second approach only retrieves the parameters connected 
with the actual particle location [11]. For the latter, an 
algorithm to determine the transport relevant properties 
depending on the particles space coordinates will be 
introduced. It is based on a three dimensional binary tree. 
So, each knot of this tree devides the corresponding 
volume into eight sub volumes of the same size. It splits 
the cuboid in each Cartesian direction. Each sub volume 
can then again be splitted into eight subs. By this regime, 
a chain of knots is generated. 

For further explanation, input data as a three 
dimensional voxel matrix is assumed. As any averaging 
in the spatial domain shall be neglected, the binning size 
of each direction is the same as that of the original input 
data. But in principle, any geometric description can be 
used to build up the binary tree. Here, the binning is 
defined by the required spatial resolution of surfaces and 
the smallest dimension of included structures. 

Because of the symmetry of the binary tree the 
algorithm provides the same number of voxels in each 
direction. To describe the whole original definition 
space without loosing information, the voxel number can 
only be increased. Hence, and because of the use of 
binary decisions, the number is defined by the the first 
potential of 2 that is larger than the highest number of 
discretisation intervalls of all dimensions. This 
procedure can result in a significantly enlarged 
definition space, but there is no data loss yet. 

Figure 1. 2D scheme of data abstraction using the voxel tree. 

The search algorithm runs step by step. Each time 
there is the decision if the coordinate in each direction is 
below or above the given cut value in the middle of the 
volume. So, there are eight sub volumes in the following 
level of the tree, and the algorithm choses one for the 
next step. Here, the same is done again until the final 
volume size is reached and the resulting transport 
parameters are determined. This algorithm leads to 
subvolumes like those shown in Figure 1 at the left side. 

It is obvious that this chain can be stopped as soon as 
all following sub volumes return the same transport 

parameters. So it is possible to reduce the amout of data 
by 1:8n depending on the remaining steps n until the end 
of the chain is reached (compare with the illustration at 
the right side of Figure 1). 

The usage of binary decisions implies the usage of 
binary structures and operations for the search algorithm. 
Inside a search loop which runs over the different tree 
levels, the decision for the choice of the next sub volume 
is simply reproduced using bit operations combined with 
pointer arithmetics. This results in a fast 
implementation. 

Figure 2.  Anatomy of the Digimouse phantom [4-5] (top) 
and its subvolume representation (bottom). 

2.3. Criteria for further data reduction 

For quite homogenous voxel geometries like 
computational phantoms, this is a very efficient 
procedure compared to the application to noisy 
measuring data like CT-Data. For example, Figure 2 
shows a phantom of the DigiMouse. The upper picture 
gives the cut view of the original data. Therein, several 
organs and tissues are defined. The one below presents 
the final depth of the search algorithm. Large areas 
without differences are concluded, seen by the blue 
squares in Figure 2. Other areas covering differences in 
anatomy require detailed reproduction. They show as 
small red squares defining the organ shapes as detailed 
as they are defined by the original input data. 

At this point, also the increase of the space of the 
original data described in 2.2 should be discussed. 
Because all areas outside of the original geometry will 
return the same transport parameters, e.g. geometric 
escape, this algorithm concludes these sub volumes. It 
results in only a small rise of the data amount. 

Using real noisy measuring data, this fusion is rarely 
possible. In addition, also some amount of data is 
necessary to organise the binary tree structure. Hence, 
without any conclusion, there would be a data increase. 

Thus, an additional window technique was 
implemented. It allows merging and averaging of sub 
voxels as long as all of them stay inside the predefined 
window range beginning from the smallest size. Hence, 
the total number of sub volumes as well as the mean 
number of knots per search run is reduced. These 
windows are parameter specifically defined. So e.g. 
areas of different regions of interest cannot be merged as 
well as volumes of different organs and material 
composition respectively. But local mass density 
variations can be averaged as long as they fulfill the 
window criteria. Thereby, structures like organ shapes 
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are kept as smooth and detailed as possible. 

Figure 3.  CT scan of mouse [7] (top) and its subvolume 
representation concerning a mass density window of 
0.01 g/cm3 (bottom). 

An example shows Figure 3. Therein, the original CT 
data at the upper picture is compared to the sub volume 
clustering of the presented algorithm. At the borders 
between bone and soft tissue as well as at the body 
boundaries the voxel size decreases down to the original 
input pixel size. And also inside soft tissue there are 
many small regions that differ in their properties visible 
by the many small red clusters. 

The efficiency of the merging of the sub volumes 
depends on the window size. For the example of 
Figure 3 a mass density window of 0.01 g/cm3 is used. 
To familiarise with the influence of the window size, 
Table 1 shows the resulting file sizes. Of course, only 
small window sizes correspond to the uncertainties of 
the original input data and hence, are reasonable to apply. 
But even with a narrow window like 0.005 g/cm3 the file 
size for this example can be reduced by 37% compared 
to the size of conventional matrix format, which is saved 
as a sequential binary matrix output. At very large 
window widths, the file size converges to a constant 
value of about 74 MB. 

Table 1.  Resulting file sizes depending on the mass density 
window range. 

mass density 
window 
(g/cm3) 

optimisation 
depth 

nod 

resulting file 
size 

(MB) 
conv. Format 

0.000 
0.005 
0.010 
0.020 
0.040 
0.070 
0.100 
0.200 
0.500 
1.000 
10.000 

--- 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

1123 
< 32768* 

709 
699 
678 
584 
398 
255 
129 
74 
74 
74 

*theoretically calculated

For testing purposes geometries with limited 
optimisation depth were created. In the following, the 
depth nod means the number of levels that can be 

concluded starting from the most detailed representation. 
So, not more than odn2  subvolumes can be concluded in 
each tree branch. Table 2 shows the results for the 
example discussed before. It can be seen that the first 
two orders are extremely necessary to achieve the 
original data size and that the reduction converges quite 
fast around a depth of five. Larger cubic volumes are 
only found in the areas outside the original geometry, 
and even there, the reduction into higher levels doesn’t 
significantly contribute to the total data amount. 

Table 2.  Resulting file sizes depending on the optimisation 
depth nod. 

mass density 
window 
(g/cm3) 

optimisation 
depth 

nod 

resulting file 
size 

(MB) 
conv. Format 

0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 

--- 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1123 
32768* 
8793 
1708 
824 
714 
701 
699 
699 
699 
699 
699 

*theoretically calculated

2.4. Comparison with other radiation transport codes 

There are data reduction techniques for other Monte 
Carlo radiation transport codes, too. E.g. in MCNP, 
there is a method known as repeated structures or 
LATTICE card [12]. Therein, the geometric world or 
cell can be divided into periodical volumes. To each, 
one out of a set of transport properties is assigned. So 
there is a reduction of necessary data, too. But there is 
still the periodical division of the space down to the 
voxel size, that influences the simulation speed and 
limits together with the size of the codomain the saving 
in memory usage. 

For the image-based whole body phantom, called 
VIP-Man, calculations up to 800 million voxel elements 
were reported [13]. But therein the codomain is 
restricted to a small discrete number of organs and 
tissues. That is not the case if medical imaging data is 
used, concerning the local variability of the mass 
density. 

3. Example for usage in radiobiology

3.1. Additional methods 

The described algorithm was implemented into a 
general data handling tool developed for data 
preparation for the Monte Carlo program code AMOS 
[14]. This radiation transport program offers the coupled 
electron photon transport as well as the neutron transport 
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in the lower energy range and in different geometries. 
As physical source even complex decay chains [15] can 
be chosen which also enables a semi time dependent 
detector response. The program is written in C++ 
standard and is designed to be run on conventional 
desktop computer systems. 

The geometry tool is used for constructing geometries 
defined by geometric shapes as well as by voxel 
matrices. For the latter, it also supports the import of 
different standard file formats like DICOM and ECAT 7. 
This input data can be modified in sense of shifts and 
rotations to achieve correct geometric positioning as 
well as by segmentations to define regions of interest 
like organs. 

A major advantage of the handling tool is that 
identical routines are used for visualisation as well as for 
the MC program. This fact is essential, concerning the 
verification of the input data and hence decreasing the 
risk of potential mistakes in the process of simulation 
preparation. 

The following example is based on the CT (see Fig. 3, 
upper picture) and PET imaging data, which are derived 
from a standard nude mice model treated with 
86Y-DTPA-Cetuximab [16]. These experiments were 
carried out in a joined cooperation project between 
physicians, biologists and physicists [17]. The applied 
radiopharmaceutical consists of the radionuclide 86Y 
bound to diethylene triamine pentaacetic acid (DTPA). 
This complex is coupled to the antibody Cetuximab 
(C225), which binds to the Epidermal Growth Factor 
Receptor (EGFR). Different tumor cell lines show an 
enhanced expression of this receptor. 

86Y enables the imaging of the activity distribution via 
PET scan. This data provides the spatial source 
distribution inside the animal. With the help of the 
radiation transport simulation it is possible to study the 
influence of different radionuclides bound to the same 
radiopharmaceutical, assuming that the chemical and 
biochemical properties will not change significantly. 

3.2. Results 

In Figure 4 the results for the dose distribution are 
shown for 177Lu and 90Y. The distributions are scaled to 
the maximum to achieve a better visualisation. But also 
for the practical usage this is reasonable, because the 
total amount of injected activity will be varied to 
achieve the necessary dose in the target tissue. It shall be 
mentioned that for both calculations the spatial 
resolution of the activity distribution and the detector 
matrix are the same. The difference can be seen clearly. 
The 177Lu treatment gives a much more structured 
distribution than 90Y, because of the shorter maximal 
electron range. It is 1.7 mm in water compared to 
10.8 mm of 90Y. For lutecium, even the squared 
structure originating from the assumed activity 
distribution is visible. It results from the relatively low 
resolution of the PET data. 

Despite of the better localisation of the dose to the 
activity, 177Lu emits photons as well. This results in a far 

distant dose deposition. The higher β- range of 90Y could 
be useful to achieve a more homogenous dose deposition 
inside massive tumors. In their centre, a significant leak 
of the activity concentration can occur, like in the case 
of reduced perfusion. This effect can be seen in Figure 4. 
At the lower right part the image plane cuts a massive 
tumor at the mouse leg. The 90Y treatment results in a 
slightly inhomogenous dose deposition in the tumor with 
a minimum in the centre. The 177Lu marked 
pharmaceutical gives a stronger underexposure there. 
This can necessitate the increase of the total applied 
activity and hence the dose to other organs. 

Figure 4.  Dose distribution of injected radio pharmaceutical 
after defined time concerning different bound radionuclides, 
left: 177Lu compound, right: 90Y compound. 

The usage of the voxel tree algorithm can result in a 
slightly longer runtime. In the discussed example, it was 
increased by 7% compared to the usage of a 
conventional matrix algorithm. This amount strongly 
depends on the simulated scenario. It decreases with the 
decreasing mean depth in the tree structure and therefore 
also with increasing number of conclusion of sub 
volumes. Furthermore, the independency of the spatial 
coordinates in the sequence of search runs influences the 
run time, taking into account internal caching algorithms 
of the CPU. 

In general, there is no difference in the results 
between conventional simulation and applying the 
presented algorithm. Differences can only emerge if the 
density window is applied. To define the upper limit for 
its size an overall uncertainty analysis has to be done. A 
fast estimate for an appropriate size can be achieved by 
investigating the uncertainties in the provided imaging 
data and the derived mass density values. General values 
cannot be given, because of the dependence of the image 
quality on the chosen imaging protocol and imaging 
device. The straggling of the Hounsfield unit values can 
be determined with measurements using homogeneous 
phantoms. 

4. Conclusion

In this paper an algorithm handling large geometric
data sets for usage in radiation transport simulation is 
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presented. It is shown that it enables significant memory 
savings in runtime and for storage. With it is possible to 
use high resolution imaging data as input data without 
the need of decreasing the spatial resolution. One 
advantage is to enable multiple calculations with 
different input data using the multi core technology of 
modern desktop systems. Furthermore in conventional 
desktop computing systems 32 bit operating systems are 
still very common. Thereby a single process is limited to 
2GB of memory – a limit that cannot be shifted by 
simply upgrading the hardware.  
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