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In this work, we performed a Monte Carlo simulation of the evaporation of prompt neutron in the fission at low 
energy. We are interested in the reaction ( )fnCf th ,249  we have a detailed experimental study of isotonic distribu-

tions at different kinetic energies. The statistical Fong model is used to calculate the intrinsic excitation energy shared 
between the two fragments of fission. The simulation reproduces correctly mass and isotonic distributions. However, 
only the peak located at N=59 of the local even-odd effect has been found. 
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I. Introductiona

In this work we have simulated the process of evaporation 
of prompt neutrons using the Monte-Carlo method, in order 
to provide possible explanations to some experimental facts 
by simulating the phase between the excited state of the 
compound nucleus and the end of the evaporation of neu-
trons by the fragments, a phase that is practically impossible 
to detect experimentally. We go back to the primary mass 
distributions, i.e., before evaporation of neutrons, from the 
measured charge distributions of the reaction, representing 
the fragments at the scission phase.1) 

The potential energy of deformation P is calculated in the 
framework of the liquid drop model,2) and the sharing of 
intrinsic excitation energy is done using the Fong mode,3) 
assuming that the two fragments are at the same temperature, 
while minimizing P with respect to deformation parameters 

 

31α  and 
32α . In our simulation the evaporation of neutrons 

is supposed certain once the total excitation energy of frag-
ment 

exE  is greater than the sum of the evaporated neutron 
separation energy 

nB  and its kinetic energy 
nε  which is 

assumed to follow a maxwellian distribution. 
In this work we discuss the effect of evaporation of neu-

trons on different observables, in particular isotonic initial 
distribution. We also try to see to what extent the observed 
structures in the local even-odd effect can be or not related to 
the process of evaporation. 

 
II. Even-Odd Effect 

The charge distribution represents the charge measured at 
the scission point since there is no proton evaporation. The 
measurement of this observable is an effective means of in-
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vestigating the scission point. 
The charge even-odd effect is defined as: 

(%)100×
+
−

=
oe

oe
p YY

YYδ  (1) 

where: 
oY  and 

eY  represents respectively, the yields of all 
charges in the odd and even charge distribution of fragments. 

We also define similarly the neutron pairing effect 
nδ . 

Unlike the charge distributions, the pairing effect of neu-
trons represents the final isotonic distribution since it is 
measured after evaporation of neutrons. 

 
III. Simulation of Neutron Evaporation Process 

Using Monte-Carlo Method 
The process of evaporation of prompt neutrons in fission 

at low energy of ( )fnCf th ,249  is simulated by the 
Monte-Carlo method. This method is essentially based on 
the random drawing of quantities, such as the number of 
initial mass, evaporated neutron energy and the excitation 
energy of fission fragments, following distributions 
pre-selected on the basis of experimental results and if ne-
cessary assumptions. Our simulated results are compared 
with those obtained by Djebara et al.1) 

The path of fission starts from by absorption of the target 
nucleus of a thermal neutron and ends with the fragmenta-
tion of the formed compound nucleus into two lighter 
fragments in excited states. 

Our simulation program is based on the following key 
elements:  

1. Determination of yields of primary masses from expe-
rimental charge yields by drawing random mass of the 
fragment following a gaussian distribution. 

2. Potential energy is calculated from the liquid drop 
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model minimizing it with respect to deformation para-
meters 

31α  and 
32α . 

3. Total excitation energy is shared between the two 
fragments using the model of Fong. The energy re-
leased Q is calculated from the mass table of Audi and 
Wapstra.4) 

4. Simulation of evaporation according the model of 
Fong.3) 

 
IV. Definition of Different Important Quantities 
1. Primary Mass Yields 

The primary mass distributions are constructed from the 
measured charge distributions (Fig. 1) by drawing random 
mass of light fragment following a gaussian distribution : 

( ) ( ) ( )
( )










 −
−=

Z
AAZYZAY

AA
2

2

2
'exp

2
'

σπσ
 (2) 

where: ( )ZY  and Aσ represent, respectively, experimental 
charge distribution and the standard deviation of the distri-
bution and is given by: 

( ) 20.004.0 += ZZAσ  (3) 

A  is the mean of mass number before evaporation of neu-
trons. It is given by UCDa

( )5.0−= Z
Z
AA

F

F

 hypothesis as: 

 (4) 

FA  and 
FZ  are, respectively, the mass and charge of the 

nucleus undergoing fission. 
The primary yields are obtained simply by adding all iso-

topic contributions: 

( ) ( ) ( ) ( )
( )∑∑








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−==
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2
''
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Figure 2 represents simulated total and independent mass 
yields. 
 

                                                                                              
a UCD hypothesis (Unchanged Charge Density) supposes that the 
ratio (Z/A) remains unchanged for both of nuclei undergoing fission 
and the two fragments of fission before evaporation. 

2. Potential Energy 
The motion of a point on the nuclear surface can be de-

scribed by a series expansion of legendary polynomials: 

( ) ( ) ( )[ ]+++= θαθαθ coscos1 33220 PPRR   

Assuming that the deformation is most likely octupole 
deformation, we can content ourselves with the term 

3P  in 
the previous development. In this case, the mutual Coulomb 
energy of two fragments is given as a function of the para-
meters of deformation, by the expression: 

( ) ( ) ( )HHLL

HL

RR
eZZC

3030

2

3231 9314.019314.01
,

αα
αα

+++
=

 
(6) 

where 
LR0
 and 

HR0
 represent the radius of the light and 

heavy fragments respectively. These are given by: 
3/1

00 ArR =  (7) 

with Fermir 5.10 = . 
As for the deformation energies, if we limit ourselves to 

terms 
3P , they can be calculated from the expression: 

( ) ( ) ( )02041.007143.0 2
3

2
33 CiiSiiii EED ααα −=  (8) 

with i ≡ L, H, and where ( )0SiE and ( )0CiE  represent, re-
spectively, the surface energy and Coulomb energy of the 
fragment and are given according to the model of the liquid 
drop model by: 

( ) amuAESi
3/2014.00 =  (9) 

( ) amu
A
ZE

i

i
Ci 2/1

2

000627.00 =  (10) 

The potential energy is, then, given by: 

( ) ( ) ( ) ( )HLHL DDCP 33333231 ,, αααααα ++=  (11) 
 
3. Sharing of Excitation Energy between the Heavy and 

Light Fragments 
Let G be the total intrinsic excitation energy of the com-

pound nucleus formed by the thermal incident neutron and 
the fissile nucleus, it is defined as the difference between the 
energy release Q and the potential energy of the compound 
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nucleus: 

PQG −=  (12) 

The internal excitation energy corresponds most likely to 
the minimum of potential energy. The problem is therefore 
to minimize ( )3231,ααP  with respect to the parameters of 
deformation 

31α  and 
32α . 

Substituting Eqs. (6) and (8) by Eq. (11) one can obtain 
the potential energy expressed as a function of the parame-
ters 

31α  and 
32α . On the other hand, it is assumed that the 

configuration at the scission point is that which corresponds 
to the minimum potential energy and thus to the maximum 
of the excitation energy, 

exLE : 

( ) 0,

31

3231 =
∂

∂
α
ααP  and ( ) 0,

32

3231 =
∂

∂
α
ααP  (13) 

Energy G is the sum of the energies of the two fragments: 

HL GGG +=  (14) 

such that 
LG  and 

HG  are the intrinsic excitation energy of 
light and heavy fragments, respectively. 

The two fragments are formed in contact; their tempera-
tures should be the same, T ~ 1 MeV. According to the 
statistical model of the nucleus,5) we have: 

H

L

H

L

A
A

G
G

=  (15) 

We finally obtain the total excitation energy 
exLE  of the 

light fragment by adding the intrinsic excitation energy 
LG  

and the deformation energy LD  and finally: 

LLexL DGE +=  (16) 

This energy will allow to simulate the evaporation of neu-
trons from light fragments, and thus determines the mass 
distribution and the final isotonic distributions and other 
important quantities. 
 
4. Neutron Emission 

The distribution of kinetic energies of evaporated neu-
trons is assumed to follow a maxwelienne distribution with 
nuclear temperature T of around 1 MeV. The kinetic energy 
of a neutron evaporated is drawn, then, randomly following 

a maxwelienne. The neutrons can be evaporated if the fol-
lowing condition is satisfied: 

nnexL BE ε+>  (17) 

where 
nε  and 

nB  represent, respectively, the kinetic ener-
gy of evaporated neutron and the separation energy. 

The distribution of neutron energies obtained by our si-
mulation (Fig. 3) can be represented by the following 
maxwelienne formula: 

( ) 





−×=

T
N n

nn
εεε exp1063.2 5  (18) 

with MeV.1≈T  
Note that the most probable value of energy of neutrons is 

around 1 MeV and is identical to the experimental value 
showing a satisfactory drawing of these quantities. 
 
V. Results and Discussions 
1. Final Mass Distribution 

The final mass distribution integrated over the kinetic 
energy is obtained after evaporation of neutrons. Figure 4 
represents the result of our simulation. Yields are normalized 
to 100%. 

We have introduced the primary mass distribution for 
comparison. Note that the distribution after evaporation of 
neutrons is shifted to lighter masses. This shift is more im-
portant for the portion of the high masses than low ones. A 
fact which is due to the increased number of neutrons eva-
porated with the mass number A. This implies both that the 
width of the final distribution is smaller than the initial dis-
tribution, and secondly the maximum final distribution 
increases slightly from the initial distribution. The surface 
distribution is always maintained. 
 
2. Isotonic Distribution 

Isotonic distributions integrated over kinetic energy is 
obtained after adding all independent yields of fragments 
having the same number of neutrons N: 

( ) ( )∑=
A

NAYNY ,  
(19) 

We have shown in Fig. 5 simulated and measured neutron 
distributions, we have also introduced, for comparison, the 
primary distribution. Note that the experimental distribution 
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is well reproduced by our simulation. 
We also note the great similarity between the experimen-

tal curve and simulated one that are very structured, 
fragments with an even number (N) of neutrons are more 
advantaged than those with neighbors odd number of neu-
trons (N ± 1). 

The favored production of even isotones compared to odd 
ones is taken into account by the average even-odd effect 
given by: 

(%)100×
+
−

=
oe

oe
n YY

YYδ  (20) 

where 
eY  and 

oY  represent the sum of all even and odd 
isotones yield in the isotonic distribution of fragments. 
The neutron even-odd, calculated according to Eq. (20) is 
equal to 11%, a value to be compared to the experimental 
value (9.5 ± 0.7)% . 
 
3. Average Number of Evaporated Neutrons 

Figure 6 represents a comparison between the evolution 
of the number of neutrons evaporated by fission fragments to 
that obtained by our simulation. The agreement is satisfac-
tory; the general shape of the experimental spectrum is 
reproduced except that the simulated values are slightly 
lower than the experimental values. The disagreement is 
more important around the mass A = 120. 
 
4. Local Even-Odd Effect 

For more detailed information, we can study the so called 
local even-odd effect using Tracy method.6) This method 
consist of estimating the local even-odd effect by the fol-
lowing formula: 

( ) ( ) ( )[ ]{ }1203
1

3 31exp
2
3 LLLLNd N −−−−=





 + +  (21) 

0L , 
1L , 

2L  and 
3L  are the natural logarithms of isotonic 

yields N, N +1, N +2, N +3. On this interval, the even-odd 
effect can be estimated by the previous formula. 

We represent in Fig. 7 the simulated and the measured 
local even-odd effect. The experimental peak located at N ~ 
60 is reproduced in an acceptable manner. A fact which 
suggests that the peak may be caused to evaporation of neu-
trons. 

VI. Conclusion 
In our work we have simulated the process of evaporation 

of neutrons by light fragments of fission. We used the model 
of Fong to calculate the excitation energy and its partition 
between the two fragments. The yields of primary masses 
are constructed assuming that the yield of for each partial 
charge Z follow a Gaussian distribution. Mass and neutron 
yields are reproduced in a very satisfactory way. Neutron 
even-odd simulated is about 11%. The peak located at N ~ 
60 in the local even-odd effect is reproduced. Thus, we con-
clude that it is due to evaporation of neutrons. The second 
peak is not reproduced. It can not be combined with a simple 
neutron evaporation. 
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