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Particle-Gamma and Particle-Particle Correlations in Nuclear Reactions
Using Monte Carlo Hauser-Feshbach Model
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Monte Carlo simulations for particle and γ-ray emissions from an excited nucleus based on the Hauser-Feshbach
statistical theory are performed to obtain correlated information between emitted particles and γ-rays. We calculate neu-
tron induced reactions on 51V to demonstrate unique advantages of the Monte Carlo method, which are the correlated
γ-rays in the neutron radiative capture reaction, the neutron and γ-ray correlation, and the particle-particle correlations
at higher energies. It is shown that properties in nuclear reactions that are difficult to study with a deterministic method
can be obtained with the Monte Carlo simulations.
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I. Introduction
Nuclear data are essential ingredients in radiation trans-

port simulations, which provide all probabilities of interac-
tions (cross sections) between materials and the particles and
photons of interest. A complete set of evaluated nuclear data
requires not only the reaction cross sections but also energy
and angular distributions of emitted particle, γ-ray production
cross sections, and so on. This information of nuclear reac-
tion, in which some of them are often inaccessible experimen-
tally, is given by theoretical model calculations, such as the
optical model, the statistical Hauser-Feshbach model,1) and
the pre-equilibrium model.

Despite the fact that the nuclear reaction models provide a
set of consistent physical quantities, it is very difficult to uti-
lize the whole information due to limitations in the database
file format and application codes. Moreover, the nuclear re-
action codes, such as GNASH,2) EMPIRE,3) and TALYS,4)

do not produce correlations among the emitted particles and
γ-rays explicitly. The correlations can be a signature of a par-
ticular nuclear reaction occurred in a nuclear system. With a
transport simulation that utilizes the correlated particle emis-
sions for the system, we will be able to probe that system in
more microscopic way.

In this study we perform Monte Carlo simulations for par-
ticle and γ-ray emissions to obtain the correlated information
among the emitted particles and γ-rays. The particle and γ-
ray production probabilities are calculated with the Hauser-
Feshbach statistical theory1) and the pre-equilibrium model.
We have been developing a new computer code to solve the
Hauser-Feshbach equation with the Monte Carlo method,5)

which basically simulates real nuclear reactions occurring in-
side a nucleus event-by-event. This technique allows us to
explore wider application areas in the future, such as correla-

∗Corresponding Author, E-mail:kawano@lanl.gov

tions between emission energies and neutron multiplicities in
the prompt fission neutrons,6–9) recoils and kerma for calcula-
tions of energy deposition and damage, and so on.

II. Monte Carlo Hauser-Feshbach Method
1. Particle and γ-Ray Emission Probabilities

Figure 1 schematically shows sequential neutron emis-
sions for the system n+(Z, A), including γ-ray emissions. We
first need to define a decay probability from a given compound
state (cn, kn), where cn denotes the compound nucleus (c0 for
the compound nucleus (Z,A+1) in Fig. 1), kn is the index of
excited state with the energy bin width of ∆E, and the suffix n
describes the n-th compound nucleus. The index k runs from
the highest excitation toward the ground state. For example,
(c0, k0) is the highest excited state in the initial compound nu-
cleus. We define a probability P (cn, kn, cm, km), which is a
decay probability of the state (cn, kn) by emitting a particle or
a γ-ray to form a (cm, km) state. The probability also requires
indices of the spin and parity for both initial and final states.
However we employ P (cn, kn, cm, km) in such a way that all
the transitions that satisfy the spin and parity selection rule
are already summed, so that P only depends on the energy
difference kn and km, and the particle energy is calculated as
(km − kn)∆E. The probability P can be calculated with the
Hauser-Feshbach theory,1)

P (cn, kn, cm, km) =
T (cmkm → cnkn)∑

cmkm
T (cmkm → cnkn)

, (1)

where T (cmkm → cnkn) is the particle or γ-ray transmission
coefficient from the final (cm, km) to initial (cn, kn) states.
The sum in the denominator ensures the proper normaliza-
tion. The particle transmission coefficients are obtained by
solving the Schrödinger equation for optical model potentials,
and the γ-ray transmission coefficient is calculated from the
γ-ray strength function in a standard manner.10)
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Fig. 1 Schematic picture of multiple neutron emission pro-
cess for the neutron induced reaction on the target (Z, A).
The solid arrows are the compound nucleus decay by neu-
tron emission, the dashed arrow is the pre-equilibrium pro-
cess that does not form a compound nucleus (Z, A+1), and
the dotted arrows are the γ-ray emission. The vertical scale
represents nuclear excitation, Bn is the neutron binding en-
ergy.

2. Monte Carlo Technique
Once the probabilities P (cn, kn, cm, km) are constructed

with the Hauser-Feshbach formula, a Monte Carlo simulation
for the particles and γ-ray decay processes is straightforward.
Starting with the initial state (c0, k0), a following state can
be determined by throwing a dice based on the probability
P (c0, k0, c1, k1), where we know that∑

c1k1

P (c0, k0, c1, k1) = 1. (2)

Once the next nuclear state (c1, k1) is chosen, the probabilities
P from (c1, k1) are calculated by Eq. (1) again. We repeat this
random sampling procedure until the nucleus reaches a stable
state, and record all the particles and γ-rays emitted during the
sequence.
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Fig. 2 Excited states of 51V below 1 MeV, and the γ-decay
probabilities from these levels.
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Fig. 3 The γ-decay probability matrix from a 100 keV neu-
tron capture state of 52V∗. The vertical axis represents the
excitation energy, and the horizontal axis is a relative en-
ergy of emitted γ-rays. The transition probabilities (in log)
are shown by the color scale.

3. Hauser-Feshbach Model Calculation
The CoH Hauser-Feshbach code version 3.1, CoH3

11), cal-
culates all the nuclear reaction cross sections above the reso-
nance range, including the total, shape elastic scattering, di-
rect inelastic scattering, direct/semidirect capture cross sec-
tion, pre-equilibrium emission, and particle and γ-ray emis-
sion in the nuclear decay process. The main ingredients in
the Hauser-Feshbach model calculation are the optical model
potentials for neutron and charged particles, the level den-
sity parameters, the γ-ray strength function, and the discrete
level properties for all residual nuclei. In this study we adopt
the Koning-Delaroche global optical potential12) for neutron
and proton, the α-particle optical potential of Avrigeanu et
al.,13) the generalized Lorentzian form for the γ-ray strength
function of Kopecky and Uhl,10) the composite level den-
sity formulae of Gilbert and Cameron14) with an updated
parameterization.15) The discrete level data are taken from
RIPL-3.16)

III. Results and Discussions
1. γ-Ray Correlation for Neutron Radiative Capture

As an example, we consider a 100-keV neutron induced
reaction on 51V. The neutron separation energy for 52V is
7.31 MeV. The energy bin width ∆E in this calculation is
50 keV. Because the first excited state of 51V is 320 keV,
shown in Fig. 2,16, 17) the compound nucleus 52V∗ decays by
emitting several γ-rays (neutron radiative capture) or by emit-
ting a neutron leaving the residual 51V in its ground state
(compound elastic scattering). The calculated γ-ray emission
probability matrix is shown in Fig. 3. The initial neutron cap-
tured state in this figure is the left top corner, and a first γ-
ray emission takes place along the horizontal line from there,
under the probability distribution represented by the different
colors. After the γ-ray emission, the second γ-ray is emit-
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Fig. 4 The γ-ray multiplicity distribution for the 100 keV
neutron capture reaction.

ted from the corresponding energy state. The thick black line
shows a typical γ-ray cascade path, in which the γ-ray multi-
plicity is four.

The Monte Carlo simulation for the γ-ray cascading can
be performed once the matrix in Fig. 3 is provided. In Fig. 4
shows the γ-ray multiplicity distribution. The average multi-
plicity 〈m〉 calculated from this distribution is 2.33.

The average multiplicity can be calculated with the deter-
ministic method. The average γ-ray energy is given by

〈E〉 =

∫ ∞

0

Eφγ(E)dE∫ ∞

0

φγ(E)dE

, (3)

where φγ(E) is the γ-ray energy spectrum, and therefore

〈m〉 =
En,cms + Bn

〈E〉
. (4)

From Eq. (4), 〈E〉 = 2.34, which is close enough to the Monte
Carlo result of 2.33. The deterministic method, however, can-
not provide the distribution of m like in Fig. 4, in contrast, the
Monte Carlo technique facilitates access to individual γ-ray
multiplicities and their energy distributions.5)

2. Neutron and γ-Ray Correlation at 14 MeV
Except for strong direct transitions to low-lying states,

cross sections for neutron inelastic scattering is one of the
most difficult process to measure experimentally, because a
single neutron emission event has to be discriminated from all
other neutron emission processes, such as (n,2n) and (n,np)
reactions. An activation technique is inadequate, as the resid-
ual nucleus returns to the stable ground state after prompt γ-
ray emissions. Recent advanced experimental technique to
measure the inelastic scattering cross section is a coincidence
experiment, i.e. a scattered neutron detection gated by a par-
ticular γ-ray transition, such as a prominent γ transition from
the first excited to the ground states.

The Monte Carlo simulation tells us how the pure (or exclu-
sive) neutron inelastic scattering process can be related to the
γ-ray emissions, including the γ-ray multiplicities and their
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Fig. 5 Correlation between a neutron and γ-rays emitted
from the 51V(n,n’) reaction at En = 14 MeV. The z-axis
is a probability per neutron inelastic scattering.

energy spectra. The joint probability for the energies of inelas-
tically scatterer neutrons and γ-rays is shown in Fig. 5. The
probability is normalized per neutron emission, which means
γ-ray multiplicities are implicitly included (an inelastic scat-
tering process produces several γ-rays). Low energy neutrons
are not observed, because the most likely process there is the
(n,2n) reaction (Q-value for (n,2n) is −11 MeV). The γ-ray
energy spectra are constrained by the emitted neutron that re-
moves the excitation energy of the compound nucleus. The
lower the neutron energy is, the harder the γ-ray spectrum
with the larger multiplicity becomes, and vice versa, which
satisfies the energy conservation.

After the excited 51V∗ is produced in the inelastic scatter-
ing process, it decays by emitting several γ-rays to reach at
the ground state. This γ-ray cascading often produces strong
γ-ray lines in the energy spectrum, which are transitions be-
tween the low-lying states, depicted by the arrows in Fig. 2.
In fact, the 320-keV γ-line is seen in Fig. 5. Although an eval-
uation in Table of Isotopes17) does not have the 470 keV line,
we followed RIPL-316) to include this level too.

When we perform an experiment to measure the inelastic
scattering cross section by detecting the 320-keV γ-ray, we
have to correct the measured cross section by adding the un-
seen partial cross section that bypasses the 320 keV transition.
This correction can be made by calculating the energy spectra
for both cases — the total neutron spectrum, and the partial
spectrum that is obtained by gating on the 320-keV γ-line.
The calculated spectra are show in Fig. 6. The spectra are
normalized to σn′/σR, where σn′ is the total inelastic scat-
tering cross section and σR is the total reaction cross section.
The coincidence measurement obviously lower the statistics,
and it is shown in Fig. 6 that only 17% of the total inelastic
scattering process produces the 320-keV γ-line in the case of
51V(n,n’) reaction at 14 MeV.

The ratio of two cases above depends strongly on the level
structure and the evaluated γ-ray branching ratios. For exam-
ple, an even-even nucleus, which manifests a rotational band
structure of 0+-2+-4+, tends to yield a clean 2+ → 0+ dis-
crete transition γ-line.18) The Monte Carlo Hauser-Feshbach
method predicts all the γ-lines that are inherent to a reaction of
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Fig. 6 Calculated neutron energy spectra for the inelastic
scattering process at 14 MeV. The dashed line is for the to-
tal energy spectrum, and the solid line is only neutrons that
produce the 320-keV γ-ray.

interest, although the calculation is suffered by uncertainties
in the nuclear structure data in some cases.

3. Nuclear Reactions at 20 MeV
For the 20-MeV neutron induced reactions, (n,n’), (n,p),

(n,α), (n,2n), (n,np), (n,nα), and (n,pα) reaction channels
open. We ignore emissions of the other charged particles,
such as deuterons, because their cross sections are too small.
The statistical Hauser-Feshbach model gives energy spectra
of emitted particles and γ-rays, φn(E), φp(E), φα(E), and
φγ(E) for each compound nucleus.

In the case of (n,2n) reaction, the two emitted neutrons have
different energies, and there is a correlation between these en-
ergies. We generated the joint probabilities p(E1, E2), where
E1 and E2 are the energies of first and second neutrons, and
the normalized probability distribution is shown in Fig. 7. The
probability is distributed in the E1 + E2 ≤ 8.56 MeV trian-
gular area, because E1 and E2 cannot exceed the maximum
energy of 50V∗. The probability distribution has some struc-
ture when E1 > E2. Since the first neutron removes a lot of
initial excitation energy from the A+1 system, the final states
of the second neutron emission are often in the discrete levels,
and this causes the structure in Fig. 7. In general, the first neu-
tron tends to carry more energy than the second one, and this
can be understood by the fact that the nuclear reaction at the
initial stage is governed by the pre-equilibrium process.

Figure 8 shows the energy correlation between the emitted
neutrons and α-particles for the (n,nα) reaction. The plotted
joint probability is the sum of (n,nα) and (n,αn) processes.
Because the emission of the low energy α-particle is strongly
suppressed by the Coulomb barrier, the α-particle spectrum
becomes much harder than the neutron spectrum. The Monte
Carlo Hauser-Feshbach model takes all this kind of physical
requirements into account automatically. Unfortunately, the
calculated correlations cannot be fully utilized in radiation
transport simulations, due to difficulties in making transport
libraries. One of the extreme applications of our technique
is to use the Monte Carlo Hauser-Feshbach code as an event
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Fig. 7 Correlation between two neutrons emitted from the
51V(n,2n) reaction at En = 20 MeV. The z-axis is a nor-
malized probability.
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Fig. 8 Correlation between a neutron and an α-particle emit-
ted from the 51V(n,nα) reaction at En = 20 MeV.

generator in the radiation transport code. This may require a
high performance computer, because all the probabilities of
particle and γ-ray interactions are calculated on-the-fly. Nev-
ertheless we believe this could be feasible in near future, ow-
ing to recent advances in computer science. This does not
mean we don’t need the transport libraries anymore, since the
Hauser-Feshbach theory is incapable to predict resonances.
Our developed method can be an alternative way to feed a set
of nuclear data above the resonance region into the radiation
transport codes.

IV. Conclusion

We performed Monte Carlo simulations for particle and γ-
ray emissions in nuclear reactions to demonstrate unique ad-
vantages of the method for investigating correlations among
the emitted particles and γ-rays. The decay probabilities at
each compound state are calculated with the Hauser-Feshbach
statistical theory with the pre-equilibrium emission. Calcu-
lated results for the neutron induced nuclear reactions on 51V
were shown as examples, which were the correlated γ-rays
for the neutron radiative capture reaction at a low energy, the
neutron and γ-ray correlation, and the particle-particle corre-
lations at higher energies. These quantities are very difficult
to extract from the nuclear model calculations with traditional
methods, nevertheless the correlations between different pro-
cesses bring us new insights into the nuclear reaction. The
Monte Carlo Hauser-Feshbach technique described in this pa-
per sheds light on concealing nuclear reaction mechanisms at
first time.
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