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Application of orthogonal polynomial expansion to quantum simulations is formulated on a general footing, imple-
menting the regulation technique by Sota and Itoh for treating for the Gibbs oscillation. It is an alternative to the kernel
polynomial method using Tchebyshev polynomial, but is simpler to handle and makes it possible to use all the popular
orthogonal polynomials, covering finite, semi-infinite and infinite intervals of the eigenvalue spectrum. The accuracy
can be made equivalent to direct diagonalization, with the resolution being homogeneous in the whole range of the
spectrum. The target quantities can be as diverse as including eigenvectors, as well as all sorts of one-patrticle properties
and correlation functions, involving thermal average and quantum time evolution. It can also be used as a handy tool
for solving linear algebraic equations.

KEYWORDS: orthogonal polynomial expansion, Gibbs phenomenon, Green function, order-N, eigenvalue
spectrum, eigenvector, time evolution, finite temperature correlation function

I. Introduction Due to the simplicity and even higher controllability of res-
olution, the RPE is expected to extend vastly the range of

Numerical evaluation of physical quantities through reso-h sical quantities to be handled by the polvnomial expan-
vent matrix has been one of the popular approaches in compPu-y d y poly P

tational physics. To this category belong the most common@'on' In the original paper, it has been applied to the calcula-

: . . . on of the eigenvectors, with the accuracy being equivalent to
used continued-fraction technigtiand the kemel polynomial the direct diagonalization. Applications to the electron trans-
method (KPM) by Voteret al>® Making use of the three- 9 - APP

; ort and Anderson localization were then attemgt@deur-
term recurrence formula of the orthogonal polynomial, a nunjz

ber of advantages may be recognized with the latter method, .*r‘F.r the scheme was _trgnsferred tothe 'maginary time domain,
; eing applied to the finite-temperature calculations of correla-

terms of the accuracy and the absence of uncertain parameters .
jon functions of strongly correlated electrons and frustrated

like the terminator. Being basically a generalized Fourier ex-". ) . . .
. . ) . . spin system, combined with the technique of the density ma-
pansion, the central issue is how one can cope with the Gib o 1-13)
rix renormalization group (DMRG)}

phenomenon, and the use of Tchebyshev polynomial has been
regarded as essential for this purp&se. In view of the above ongoing developments and further po-
Recently Sota and Itéhused Legendre polynomial as thetential applicability, we attempt in the present paper to formu-
basis set, proposing an alternative way to remove Gibbs osdite the method on a general ground, without specifying the
lation. It is called theegulated polynomial expansion (RPE)basis polynomial. This generalization enables us to make use
and has a very different principle. While the KPM madi-of all the polynomials, defined not only in a finite but also
fies the expansion coefficients to suppress the fluctuations, tinesemi-infinite and infinite intervals of the eigenvalue spec-
RPE modifies the basis polynomials by the procedure callétim. Reviewing our earlier results, we examine the working
regulation in such a way that the oscillating contributionsorder of the method more closely, clarifying its mathematical
from different expansion orders are made to cancel entirelgtructure and fundamental properties of the kernel function.
The degree of each polynomial is unaltered, but the amplitude particular emphasis is laid on resolvent, but we also dis-
is modified and the zeros are shifted relative to the originaluss various extensions from a unified viewpoint. Particularly
locations. Since the regulated polynomials are produced rtdte time-evolution operator is carefully examined with some
cursively, the algorithm of the RPE is essentially the same amimerical studies.
the naive polynomial expansion, requiring no additional rou-

. . The paper is organized as follows. In Section Il we briefl
tines to remove Gibbs phenomenon. pap g y

summarize the polynomial expansion of resolvent expansion.
*Corresponding author, E-mail: itomasa@riko.shimane-u.ac.jp The mathematical structure is studied carefully, as well as its
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recursive structure and relationship to the moment expansiorhis leads to an ideal order-N scheme, because Smyatrix-

In Section 11l we formulate the regulation technique, and showector (not matrix-matrix) multiplications need to be executed
some numerical examples to see how effectively it removder the truncation ordeN. In practice, we need to know the
the Gibbs phenomenon. Various applications are discussexpansion coefficients, for each functionf. We will discuss

in Section 1V, including the calculations of eigenvectors anthe case of resolvent in this section. Other cases are relatively
guantum time evolution. The final section is devoted to aasy.

summary. Some mathematical details are described in Ap-

pendix A. In Appendix B, we tabulate all the necessary inputs. Resolvent and Adjoint Functions

for invoking the RPE. Although the paper is rather intricate | many branches in physics, Green function method is one
mathematically, a quick reference to this table will suffice fopf the most useful techniques. It uses resolvent operator
using the method.

Glz)=(z—H)", @)

. Gen(?ral Fra.lme.work of Polynomial Expansion whereH is the Hamiltonian and the complex frequency pa-
and its Application to Resolvent rameter. This corresponds f¢z) = (z —z)~' andQ = H
In this section we formulate the naive polynomial expanil EQ- ), and our concern is how one can evaluate its matrix
sion of resolvent, without caring for the Gibbs phenomenor§'ements effectively. Equationd)(and ©) then read
The latter problem will be discussed in the next section. We .
shall_glve in Ap_pend|x A the explicit expressions for the ex- G(z) = Z W G (2)pn (H) ®)
pansion coefficients, for all the popular polynomials, with de- s
tailed proof for each. Here we only outline the mathematical
argument and present a practical way to calculate them.  and
We only demand the three basic properties for the polyno- P(2) = /b dxw(x)%(x) ©)

mial set: Z—x

b respectively. Here we have used the sy z) instead of
/a daw(@)ipn () o (2) = Wnbn (1) fn, in order to show explicitly the depeﬂcé o@and the
relevance tap,, (x). We call,(z) theadjoint function (AF)
d(z —12') = w(x) Z w;, o () () (2) to ¢, (x). In practice, we need their analytical continuations
n &n (€ £ id) onto the real axis. We will discuss it in some de-
and tail in the following two subsections. It is obvious that their

imaginary parts are given by
on+1(x) = (Anx + Bn)on(x) + Copn-1(x) . (3)

Herep, () represents a polynomial of degredelonging to
the basis setja, ] is its definition interval,w,, the normal-
ization constant and(x) the weight function. To this family

Im@, (e £ i) = Frw(e)pn(€). (10)

The corresponding part of resolvent,

belong Legendre, Tchebyshev, Jacobi, Laguerre and Hermite R oo R
polynomials, but we can make use of many others, as long as d(e — H) = w(e) Z w;, o (€)on(H) , (112)
the conditions 1)-(3) are satisfied. n=0

Now suppose that we wish to handle the operation of a
function of a quantum operatd®, f(Q2), on a vectorf¢ >. 'S called the ke'rnel operator.
The matrix size of2 may be quite large, involving many de- '€ expansiond) has some relevance to the moment ex-
grees of freedom. Typical examples are the functions of tHEA"SION. The AF of the-th degree is expanded around the

HamiltonianH, e.g. the kernel operatéfe — ), resolvent INfinity as o

-1 : 7 iHt i - Km
[z .H], , the time evolutlpn operatar—*"** or the density Gn(z) = Z T (12)
matrix e=## . We expandf () as R
A = » with the coefficientst " defined b
FQ) = wi fupa(©) | (4) Y
n=0 b
where K :/ drz™w(z)en (). (13)
b a
fn = /a dzw(z)pn()f (). ®) Note that the summation oven in Eq. (12) is restricted to

. i (n) _ i
Then handling the operatiof(Q)|¢ > is easy, because each’™ = ™ Sincelm” =0 for m < n due to the orthogonality
term %(Q”g > is evaluated recursively using)( of the polynomials. This leads to an important asymptotic

K condition at the infinity,
SD”Jrl(Q)A'f > N R : n+1 ~ (n)
= (4@ + B)pn( QI > +Cupur (> . (6) i 2 (=) = K (14)

VOL. 2, OCTOBER 2011



690 Toma MATSUMOTO et al.

When the expansior8] is truncated at somgnite order V,
Egs. 8) and (L2) may be written as

N e} ~
Gy(z) =Y w ' eu()en(H) = Y 5 (15)
n=0 m=0

with Rez
N

fim =Y Ko (H) . (16)

n=0

Here the subscript of!y is to indicate the truncation order.

The trace of the operatgt,, gives an approximate expression ‘ _ _

to the m-th order moment of the frequency spectrum. It i§9- 1 Convergence circles of the two functior&0( and 62) leading to
N . . the two expressions in Eq1l9). They are identical in the common area

aACtua"y exact forn. < N, because‘m is then |dent|ce}l to (hatched). The bold line connecting= =1 is the branch cut.

H™. Sothe moments of the DOS are conserved strictly up

to the order of the truncatianFor higher-ordersig > N),

Eq. (16) still gives an optimal approximation t&"™, in the

sense that it minimizes the squared ndfgm, — ™ ||? with a The physical solut_ion .td?”(z) is gene_rally constructed py
limited number of polynomials, which is the major differencdaking a linear combma_tlon of the two independent solutions
from the moment expansion. of the ADE, one of which may be taken to bgz)p,(2).

In doing so, the asymptotic conditio4) is to be consulted
2. Determination of Adjoint Functions to determine the combination uniquely. It is then analytically

continued onto the real axis to obtai (e &+ i9). The contin-
Hlation yields two branching points at= a andz = b, as well

is generally not elementary. Particularly one must be caref ; .
about its proper analytical continuation to obtaip(e £ ¢9). as the prangh Cl.Jt cpnnectmg them. Th? case of ‘]a.COb' poly
nomial is a little intricate, because two different functions can

However 'F can bg carried through via a different root_. Th?esult from this procedure, i.e., Eq®0f and 62). They are
argument is fairly involved, and we give here only a brief ac:

. . . . igentical in the common area of the two convergence circles
count, taking Jacobi polynomial as a representative case. - . : .

: A . . shown inFig. 1, and two alternative expressions are obtained,
thorough discussion is given in the Appendix A.

First, we note that Eq9) may be regarded as a special case paﬁ(e +i6)
of Hilbert transformation "

The determination of the AF through the integrati® (

Y(z) = /b dr(z —x) " to(z) . (17) = [ weot(nf) Fim]-(1—e)*(1+€) P’ (e)
This transformation allows one to express differentiations on +2a+,8(_1)n+1 L(Ar(a+n+1)
¥(2) by those onu(z), by partial integrations. In particu- Ila+B+n+1)
lar, whenw(z) satisfies a panonical secqnd—order differential xF(n+1,—a—f3—n|l— B 1+ 6)
equation’ v (z) = 0, v(z) is shown to satisfy the same equa- 2
tion £,v(x) = 0, if the marginal contributions resulting from
the partial integrations vanist. This is indeed the case for all = [~mcot(ma) Fim]-(1—e)*(1+€) P (e)
the popular polynomials (see Appendix A), so we can readily
derive the differential equation fa¥,, (z) from that forp,, (2). ga+8 Fa)'(f+n+1)
We call it theadjoint differential equation (ADE)n the case + I'(a+B+n+1)

of Jacobi polynomiaP2#(z), the ADE becomes 1 ¢
xF(n+1,—a—f8—n|l— a|T) , (19)
2
(2 - 1) Po(2) ¢ funci
dz2 whereF (a, b|c|z) denotes the hypergeometric function.
d =.5 There is another complication in Eq49j: in either of the
—[(la+5-2)z+(a~ 5)]513” () two expressions, the two separate terms involve divergences
—(n+1)(n+a+ 5)]5:ﬁ(z) —0. (18) respect_ively, when either of_ the two indices, (5) is an inte-
ger. It is apparent for the first terms due to the co-tangents.
Here we have denoted bR?B(z) the AF associated with A similar divergence also occurs in the case of Laguerre, but
P28(zx). The same convention will also be adopted for othethese problems are spurious and circumvented as shown in the
polynomials throughout this paper. Other ADE’s are readilyiext subsection.
written down for the respective polynomials. Generally, they
are given in Papperitz canonical forms, with the three regul&@ Recursive Structure of Adjoint Functions
singular points at = a,b andz = oo, but it can happen that  The preceding discussion, together with the complement in
two of these singularities are merged into a confluent type. Appendix A, clarifies the mathematical structure in the com-
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plex frequency plane. However, evaluatipg(e+1id) through
the expressions like Eqsl9) to the higher degrees is not too
convenient. Instead, we may make use of the recurrence for-

mulae 0s
Gnt1(2) = (Anz + Bp)@n(2) + Cndn-1(2) , (20) 02
¢1(2) = @o(2)p1(2) — Aowo (21) s

for evaluating those functions. The above formulae, the 0 \ . . “’15

first of which takes the same form as E®),(are readily
proven by using Eqs.3f and @) and noting that the integral Fig. 2 The eigenvalue spectrum of a SC lattice vibration16f atoms,
fab w(v’c)%’n(l’)dﬂ? vanishes whem > 1. We thus need only mmﬁtet{is;tg%gtr;\c;r:thleog|bbs oscillation. Legendre polynomial is used
the initial functiongg (e + i4). '
At first sight, the forms ofp,, (=) for higher degrees antici-
pated from Eqg.Z0) may appear at variance with Eq2). But

the asymptotic form is assured by the following identity ~ Using the expansiori() with Legendre polynomial. The sys-
tem we studied is a simple-cubic latticelsf® atoms with the

Kr(;ffﬂ) A K(”>1 + B, K(" +C, K(” v (22) nearest neighbour force constant. The periodic boundary con-
dition has been adopted for constructing the dynamical matrix.
which is proven by multiplying Eq.1Q2) by w(z)z™ and then The size of the matrix is typical of ordinary numerical studies,
integrating ovela < z < b. Note, also, that the branching and the bulk spectrum of the model is calculable analytically.
points of po(z) are inherited successively to the higher deAs is seen from the figure, most of the important physical in-
grees, so that all the functiogs, (z) share the same cut. formation is lost by the violent fluctuations. The problem is
The initial functions are tabulated in Appendix B, excep@ctually in two ways; firstly due to the Gibbs phenomenon,
for the cases of Jacobi and Laguerre polynomials with integrahd secondly due to the discrete nature of the spectrum. It is
indices. Integral indices are obviously common in comparisotfierefore important, for a modest size of the matrix, to distin-
to non-integral ones, but cause apparent divergences, as mguish between the two different effects numerically.
tioned in the preceding subsection. As for the initial term, Sota and Itofl showed that the former effect is entirely
however, divergence-free expressions are obtainable direcélfminated by using theegulatedpolynomial
from (9),

~ (Pnl@))y = ——s / dole™ 2 () (25)
PP (e+id) = w(e) x (ln‘iﬂ‘ ;iw) 2ro?
o ga+8 1_ 1 e\? as the new basis set, instead of the original polynomial set
+ Z ( 6) ( 6) on(x). The resultant expressions for resolvent and kernel op-
a—pu+1 2 2
p=1 erators are
B v—1
20BN (B — ) (14 N
- Xy ( 2 ) (@3) (Gh(=) =D wi'n() (paliD))  (@6)
v= o ne0 o
and N
- _f — -1 2
Ig(c+id) = w(e)x (—Ei(e) Fim) (ow(e—1) =wu(e Z;)wn o) (pa)) - @D)
— Z Wet 1t (24) This is the regulated polynomial expansion (RPE). Its effec-
p=1 tiveness is illustrated in the next subsection. For its practi-

cal use, the above authors noted thaf, (x)), may be re-
wherew(e) representsl — €)*(1 + ¢)” for Jacobi and“e~°  garded as a polynomial of-th degree for sufficiently small
for Laguerre. Equatior2@) coincides with the result for Leg- o, since the integration in EcR$) can be practically extended
endre whery = 3 = 0 (Appendix B), for which only the first to —oco < 2’ < oo. Further they found that these "pseudo
term is relevant. polynomials” may be evaluated by a set of recursive relations

. I . (Pnt1 (x)>o' = (Anz + By) <‘Pn(x>>o +Cy <‘Pnfl(x)>g
lll. Gibbs Oscillation and Regulation o2 A (G (@), 28)
1. Regulated Polynomial

The argument in the preceding section completes the fopnd
mal polynomial expansion of resolvent. The problem of the,
Gibbs phenomenon is yet to be overcome. We shokign 2 <""n+1(x)>a
the frequency spectrum of a lattice vibration, calculated by = A;, (¢, (), + By, (¢, (2)), + Cy, (@), _1(2)), - (29)
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In the original paper the above relations were derived only The similarity to the normal distribution is also reported in
for Legendre polynomial, but the same kinds are available fahe case of Jackson kernel in the KBMut there is a funda-
all the popular polynomials. The first relation is readily desmental difference between the two cases. First, the latter func-
rived from Eqg. 6) and Eq. 25). It involves a derivative term tion is constructed by different principles, so deviates consid-
coming fromz,, (x) in Eq. 3). Note that the differentiation erably from normal distribution. Also, the variance of Jack-
and the regulation may be performed in the reversed ordaon kernel depends explicitly on the eigenvalue, causing an
i.e., (¢} (z)), = d/dz {(pn(z)),. The second relation is a di- inhomogeneous resolutidr?) These points will be discussed
rect consequence of the same relation amongithegulated quantitatively in Section I11.3.
polynomials. The coefficientd;,, B;, andC;, are tabulatedin  p_e to the above properties of the RPE kemnel, the RPE
Appendix B for all the popular polynomials, since the authorgpectrum
did not find all of them in the literature.

Th_e above_clo_sure relations may be u;ed with a_matrix vari- D(e) = Z (O (e =€), (32)
able in substitution for Eq.6]. This algorithm requires only
a minimum modification of the naive expansion. Since only

a single matrix-vector multiplication is involved in Eq28] g yositive and strictly normalized, with a homogeneous reso-
a.md @9), there is no appremab!e change in th? computatiofyiq, in the whole range of the spectruiFigure 4 shows its
time. We emphasize that, unlike the conventional methody,,jications to the same phonon spectrum studied in Big.2,
ology for suppressing Gibbs oscillation, the RPE does nQfi jow and high truncation orders. In each case, the pa-
merely damp the higher-orders in the expansion. Insteadrgmetem is set equal to its optimal valur/N (this value
rather modifies the basis set, in such a way that the oscillatig\gll be confirmed in Section I1I.3). In either case, the Gibbs

contrlbluthnslfrom dllfferent Iorders aref,- rr:\ade to cafmﬁel. IT%scillation is completely eliminated. For the present matrix
example, It also involves re-location of the zeros of the po Ysize, a relatively low-truncation calculation shown on the left

nomial. (N = 200) provides a best simulation of the bulk, resembling

, ) the analytic solution. The high-truncation calculation on the
2. Kemnel Functions and Eigenvalue Spectrum right, on the other hand, shows the precise spectrum of the
The effeCt Of I‘egulation iS best i”ustrated by examining thﬁnrte matrix_ The Spikes are by no means due to the G|bbs
kernel function, i.e. the eigenvalue of the kernel operator. Igscillation, but solely to the discreteness of the spectrum. The

Fig. 3, we make comparison between the regulated and unregiscrete character starts to show up arobhd 2 x 10°; here

ulated kernel functions, calculated by using Legendre polyngne resolution has been increased by far. By comparing to
mial. The former is given by the direct diagonalization, the location and the height of each
peak have been confirmed to give the correct eigenvalue and

(On(e—ea)). = w(e) i Wl on(€) (onlea)) (30) degeneracy, to the accuracy of the six digits.
7 n=0 ! 7 The same calculation has also been attempted with the two
Jacobi polynomials, witv = 8 = —1/2 and+1/2. The

wheree, represents an eigenvalue of the Hamiltonian. It may, e\ case is equivalent to using Tchebyshev. The results are

be regarded as a Fourier expansion of the normal dismb“ti‘?ﬁ'distinguishable from the case of Legendee £ 3 = 0)
function used in Eq.25), so the RPE kemnel is designed t0 beyihq,gh a very fine Gibbs oscillation was found to persist in

[e3

close to it: the case of Tchebyshev.
1 2 2
On(e—€q)) ~ ————e (c7€a)7/207 31
(On( ) o 5o (31) T

04

40 MG, (N=5x10°)
As we show in the next subsection, the accuracy of the above’’ ImG,

approximation is extraordinary for an optimal value ®of o

which can be made arbitrarily small by choosing a lariyer 20
The best is practically independent of the eigenvahie ReG,

04 0 L ‘ Il ‘ ‘
; 0

.HJJ“ .

300 | -5 o 5 10 a)zlﬁ 5

50
200 . . . .

Fig. 4 Re-calculation of the same spectrum as shown in Iflbusmg reg-
100 <> o=2n/N ulated Legendre polynomial. Left: low truncation ordaF & 200), right:
€ high truncation V = 5 x 10°). The resolution is set to be = 27 /N in
0 € the both cases.
0
6 0.1 0.2 0.3 6.4 o 0.1 0.2 0.3 0.4

Fig. 3 Comparison between the two kernel functions with Legendre poly-

nomial. Left: without regulation, right: with regulation. Hetg = 0.2 timal R lution and Kernel rator
and the value of is taken to be&x /N on the right. 3. Optimal Resolution and Kemel Operato

The optimal value of can be searched for by minimizing
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Rapid Scheme of Producing Generalized Fourier Expansion of Matrix Functions and its Application to Physical Problems 693

250

the squared norm — KPM s
b 200 — o0=4IN
In(o) = / dew(e) | (On(e — €a)), — g=21IN 2
a 150
*;67(676”‘)2/2‘72 |2 (33) 100 '
27“72 0 0.205 0.210 0.215

with varying o for a givenN. This integration represents the %

deviation of the kernel function from the normal distribution. .

It is plotted inFig. 5, on the left. As is seen from the figure, 0.8 02 022 0.24

the norm decreases rapidly and monotonically as we increase

o. It goes down to the smallest values that are barely dedito- 6 Compa_rison petween KPM Ja(_:kson and Legendre RPE kernels for

with by double precision. I searching fo he beste have - — 2000 oo and o ptmaluesofr e e e

therefore set a criterion thdly (o) < ¢, whered is a small are not visible in the magnified scale.

positive number, and chose the smalledb satisfy this cri-

terion. On the right in the same figure we show the results

with § = 5 x 10716, a value just starting to cause numeri-

cal underflow. We have repeated the above calculation for %unall N

the polynomials listed in Appendix B. In every casd,N)

is fitted very precisely by (N) = C/N<. Here the index

« is strictly unity for the polynomials defined in the interval o

[—1,+1], and1/2 for Laguerre and Hermite. The value of We also note that the above characteristic of the RPE kernel

C depends appreciably afy there is a tolerable range 6f is considerably different than that of the KPM. Being practi-

for eachs and for each polynomial. In the case of Legendre‘?a”y identical to the normal distribution, the RPE kernel is

§ = 1078 corresponds td < C' < 8. SoC = 4 may be used €vidently oscillationless, as opposed to the criticism raised re-

to attain the highest resolution within this accuracy. Going bé&ently by Schleedet al® The resolution is uniform and de-

yond this range causes eventual blow-up of the norm. It see@@nds only onV. In the KPM, the Jackson kernel becomes

that the best value for an oscillationless kernel is obtained gymmetric and varies its width, as the eigenvalue goes away

C = 2r, forall 6. from the center of the spectrum. The squared norm corre-
We have not specified the value«fin Fig. 5. Actually we ~SPonding to Eq.33) is of the order of unity and increases with

found that/y (c) is practically independent af, whenN is ~ increasingN. In fact. the Jackso.n I_<erne| carries many _satel-

relatively large; we do not see the difference in the scale oustt® Peaks representing the uneliminated Gibbs oscillation, as

in Fig. 5. The variation of y () with e, is comparable tg, Shown inFig. 6. Those satellite peaks grow with increasing

unless the values af, are too close to the limits of the defini- V- The above authors claim that residual oscillations exist in

tion interval. With such restrictions aN ande, in mind, the ~the Legendre RPE kernel for = 4/N, but such oscillations

fact implies a completely homogeneous resolution of the RP&€ bymanyorders of magnitude smaller than those satellite

spectrum. Also we may express Eg1)in the operator form, peaks, if an optimad is used; more than two orders smaller
even fore = 4/N, which is not optimal.

In this connection we note that the variance of the
RPE kernel is fixed strictly te- and the first moment to zero,
irrespective o, andN.

N 1 2 o 2
On(e— H)> o~ e (e H)" /207 (34) o
< o \2mo? IV. Other Applications
This "analytic" expression is useful in using the RPE in the In Secti I and 1l h f d | d
time or the finite temperature domain (Section I1V.5). The ac- n Sections Il an we have focused on resolvent an

curacy of Eqs. 31) or (34) is assurectven for a relatively elgenyalue spectrum. !n this section we briefly summarize
other immediate extensions of the methodology.

1,(0) o(N)

1. One-Particle Properties
0.016

! Ino The RPE can be applied to various spectrum-related prop-
107~ erties directly. For example, the integrated density of states is
1078 - 00t calculated as follows:
107~ InN 0o
-16 _ — X
10 0.002 - N N(e) = Z w, & ()T <90n(H)>U ) (35)
. n=0
0 0.05 o 0 2 4 x10°

Fig. 5 Left: squared norm33) for the regulated Legendre kernel, as func-whereg,, (¢) are given by
tions ofo. Right: smallest to satisfy/y (o) < 5 x 10~ 16, The calcu-
lated values are very well fitted by = 27 /N, as shown by the inset on
the right.

&nle) = /6 dzw(zx)pn(z) . (36)
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With Rodrigue’s formula, the integrand of E@6) becomes a
complete differential when > 0, which yields

— ()Pt P (e) (Jacobi) NN
En(e) =< —w(e)H,_1(e) (Hermite) (37) ; LT N
Lw(e)LeT{(e) (Laguerre) . N P \\\

In the above expressions, the weight functiaris) are those

associated with the indices given on the right hand sides bfa. 7 RPE calculation of an eigenvector of the roton excitation in Ar su-
the equations. The expressi@8) avoids the numerical inte- ~ Pereeoled it

grations and evaluates the integrated density of states directly.

The coefficients,, (¢) are also obtainable recursively.

Many of the integrations involving the frequency spectrun®ince the weight of each component in the above equation
(or single resolvent) are treated in similar manners. For eletollows the distribution 81), this enhances the amplitudes in
tron problems, for instance, the total energy and the highéne vicinity of ¢, while eliminating those of the remote values.
order moments of the density of states are given in simildrhe renormalization of the vector is taken as granted. Since
forms to Egs. 85)-(37). A somewhat different (and handy) the width of the weight can be made arbitrarily small and the
algorithm was proposed by Sota and Itoh for evaluating theskirt decays strictly according to the normal distribution, the

with Legendre polynomié. filtering can be made almost perfect, so that one is able to
pick up only the closest componentdoThis property of the
2. Correlation Functions RPE kernel operator has been exploited by Sota anéfltfar

A correlation function is one of the most suitable tarStudying the vortex-like roton excitations of a glassy material.
gets of the polynomial expansion technique, and the KPNiN€ resultis reproduced Fig. 7. . .
has often been utilized for this purpo$k.Recently, Sota For a highly degenerate case, the filtered vector may still
and Tohyam&-12 and Sugimotoet al'® have applied the have finite amplitudes of the neighbouring components. These
RPE to a finite-temperature calculation, developing a confésidual am_plitudgs can be eIimin.ated by rep.eati_ng the above
bined scheme with the density matrix renormalization groufycle, possibly with a smaller width, by adjusting the pa-

(DMRG). In these calculations, they deal with the correlatiof@Metere to < €|H[€ > and replacing¢ > by 3 >. The
function of the form above authors attained the accuracy of the six digits, at most

in two cycles, for both the eigenvector and the eigenvalue of
Yan(w) o /de <5(€ —H)Ad(e +w— FI)B> , (38 @ 20,000 x 20,000 matrix. In the_ case of a real degener-
acy due to symmetry, one may still resolve it completely, by
o o using different initial vectors to obtain different eigenstates,
where(- - -) denotes the finite-temperature statistical averaggng then adopting Gram-Schmidt orthogonalization to the lat-
For calculating a linear-response function like EB)( the ter vectors. The same accuracy can not be attained by the

RPE requires only the repetition of the same algorithm, fagp\ jackson kernel, due to the extending and growing satel-
operating different operators successively. The computatigge peaks.

time is proportional only to the number of the functional oper-

ators involved. In principle, there is no limitation in the num-4_ Matrix Inversion

ber of such operators, so a complex property such as the Hall-,o gigenvector calculation described above suggests that
conductivity can be a target quantify. For taking a thermal o ppe may be useful for other linear-algebraic problems.
average, the density matrix °/ and/or the (imaginary) time  Another interesting application is found by setting= 0 in
evolution operatoe™ are to be involved. Such caIcuIationsEqs_ @ and @),

are more difficult at lower temperatures. Sota and Tohyama

obtained a good accuracy at all temperatures by the RPE, but ALl = - A
a further improved treatment of this operator will be discussed @ == z_;) Wy n(0) <<’D”(Q)>g ’ (40)
in Section IV.5. "

wherey,, (0) refers to the real part @b, (¢ & i9) for e = 0. It
3. Eigenvectors can be applied, for example, to solving the algebraic equation
The regulated kernel operat@) serves as an efficient fil- 2§ >= |¢o >, with the solution being obtainable by the same
ter to extract an eigenvector component from an arbitrary infecursively algorithm as
tial vector. On operating it on a vect{g >, one obtains

| 5= =" w0 (pa(@) 10> . (@D
> ’

<(5N(€—I:I)> |€> n=0
Z Onle—ea)) | >< ale > (39) This scheme is quite handy and accurate, compared to the ex-
e ' isting standard packages, so expected to be useful in many

[e3%
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areas, not necessarily in physics. In particular, it does not dis- [#(xF

criminate a dense matrix and was found to work even for a

non-hermitian matrix. For example, Yamane and ¥bhave t=n t=0
obtained an accurate solution for a Bethe-Salpeter equation, o5

for which simple iteration failed to converge.

5. Time Evolution Operator
Time-dependent approaches in quantum simulations have
been studied extensively in recent yetrs? both in the real
and imaginary time domains. Many of them make use of the
polynomial expansion to the time evolution operator”? or
its continuation to the imaginary time. Here we discuss thgig. g probability distribution|ss(z, £)|? that evoluted fromy(z, 0) o
former operator, because it is visually more illustrative. e—(@=a)2/26% (¢ — 0.5, q = 5.0) by the Hamiltonian43). Calculation
In the context of the present paper, it is natural to use thehas been done by Eq#2) using Hermite polynomial, wittv' = 650 and
regulated time evolution operatare iflt - This approach ‘l’mti/nﬂ(fwithﬁ’f); frr/‘)l”;_ r'Tghh;tti‘r’nf‘:;/gluﬁgr’] iQSAsfl:i g’t@t’;eﬁg}c‘
has been adopted in Referendes-13, but a more accurate  coincident with the analytic solution.
and convenient expression is available in the RPE:

ST 2,2 T
it eat/2<e th>

2 0 2 4 6 X

N o the order of unity. In order to prevent it, we proceeded step by
0242 L . step, by the interval o\t = 27 /13, updating the initial state
e 2 Z wy, ' () <¢"(H)>U - 42) 4t each step by the final state/ of the last step. We continued
=0 the calculation up ta = 200 x =, and it produced numer-
The first line of the above expression holds to the same aically stable and precisely periodic time evolution, showing
curacy of Eq. 84) and is proven by using the latter relation,no indication of starting to deviate from the analytic solution.
noting that< e~I* > is its Fourier transform. Herg, (t)  Therefore, our methodology appears to assure a very high ac-
denotes the AF in the time domain, whose explicit expressioféiracy with a practical computation time.
are readily obtained for all the polynomials; the case of Leg- The other polynomials can also be used for the time evolu-
endre is given in Referend It is important to note that the tion calculation. A more detailed study of this subject will be
expression42) is sufficiently accurate for finite NV, provided  reported elsewher&)
that an optimab is used, because its accuracy is solely due to
Eq. 34) and not to the smallness of So high precision is
expected at relatively low truncation orders.
As a numerical test, we have examined the time evolution \We have formulated the orthogonal-polynomial expansion
of a one-dimensional Gaussian wave packet with a harmorji¢ a general framework, particularly of resolvent, elucidating

V. Summary

Hamiltonian the analytic structure in the frequency plane. Implementa-
. 142 1 tion of the RPE technique has been done for all the important
H = Sy + 5(33 —2)% (43) polynomials to remove Gibbs oscillation. The advantage in

using the RPE is that it achieves both high accuracy and high

taking ¥ (z,0) o e—(z—a)?/26% 35 the initial state. The rea- speed computing with the simplest algorithm, assuring a com-
son for studying this model is the availability of an ana®letely homogeneous resolution. Due to a wide availability of
lytic solution® We used Hermite polynomial for the expan-the polynomials, the present generalization has extended the
sion @2), for which @, (t) = (_it)n\/,]*reft2/4. As for con- range pf_thg tractable matrices, covering finite, semi-infinit_e
structing the Hamiltinian matrix, we chose the eigenvectordnd infinite intervals of the spectrum. It has also found a vari-
of the undisplacedoscillator as the basis. This representa€ly of applications, including correlation functions, eigenvec-
tion helps us to reduce the matrix size; we found thea  [OrS, matrix inversion, time evoll_mon and finite temperature
eigenstates are sufficient to expand the wave packet. The diglculations. The possible application of the method is ex-
placed Hamiltonian43) is not diagonal in this representation. Pected to be more diverse than shown in this paper.
Although the eigenvectors may be given by Hermite poWnoReferences
mials, our choice of the matrix representation by no means
favours the accuracy of the calculation. 1) D. W. Bullet, R. Haydoc, V. Heine, M. J. Kelly in H. Ehren-

Figure 8 is the numerical result for = 5 and¢ = 0.5 reich, F. Seitz, D. Turnbull (eds.$olid State Physi¢d/ol. 35,
of the wave-packet parameters, up to the half-periog (r) Academic Press, New York (1980).
of the harmonic motion. The expansiof?f was truncated at 2) A. F. Voter, J. D. Kress, R. N. SilverPhys. Rey. B53,
N = 650 and we set = C//+/N (C = 2.94). The calculation 12733(1996).
was found to reproduce the analytic solution very precisel$) R. Chen, H. GuoComp. Phys. CommuyrB119 19 (1999).
Although our scheme gives the final state directly in princi4) A. Weisse, G. Wellein, A. Alvermann, H. FehskRev. Mod.
ple, we encounter the numerical underflow fdonger than Phys, 78, 275 (2006). and references therein.
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5) R.N. Silver, H. RoderPhys. ReyE56 4822 (1997). The functionalP is called the bilinear concomitat®. If
6) S. Sota, M. Itoh,). Phys. Soc. Jpn76[5], 054004 (2007). it vanishes at the boundary, then the two functioh)
7) S.Sota, M. Itoh]). Korean Phys. Soc4[915], 386-392 (2009). andwv(z) satisfy the same differential equation. Indeed one
8) M. Amini, S. A. Jafari, F. ShahbazEurophys. Lett.87, 37002 C€an proveP(z,z,v)[,—ap = 0 Whenv(z) = w(z)pn(z),

(2009). with ¢, (x) being any of the orthogonal polynomials dealt
9) J.Schleede, G. Schubert, H. Fehdkerophys. Lett.90, 17002  With in this paper andC, the differential operator such that
(2010). Lo{w(x)en(z)} = 0. We give below the proof in the case of
10) T. litaka, T. EbisuzakiPhys. Rev. Lett90, 047203 (2003). Jacobi polynomial. This polynomial satisfies the differential
11) S. Sota, T. Tohyam#&hys. ReyB78, 113101 (2008). equation
12) S. Sota, T. Tohyama, Phys. Conf. Ser200, 012191 (2010). &2
13) T. Sugimoto, S. Sota, T. TohyamBhys. Rey.B82, 035437 (z% — 1)ﬁp;:ﬂ (z)
(2010). v J
14) P. M. Morse, H. FeshbactiMethod of Theoretical Physics" +a+B+2)z+ (a— 5)]73‘;5 (z)
McGraw-Hill, CH5 (1953). da
15) M. Itoh, Phys. ReyB154241 (1992). —n(n+a+B+1)PyP(x)=0. (45)
16) S. Sota, M. Itoh)). Korean Phys. So54[915], 393-399 (2008).

: . Knowing thatw(x) = (1 — 2)*(1 + ), the operato, is
17) Y. Yamane, M. ltoh, in preparation. readily identified and the ADE1@) results. We then obtain
18) R.P. Feynman, A. R. Hibbs, iQuantum Mechanics and Path {he pilinear concomitant explicitly.

Integrals McGrow-Hill (1965). '

19) S.Roche, D. MayolRhys. Rev. LettB79, 2518 (1997). P(z,z,v) = (1—az)'to(142)*F

20) M. L. Williams, J. Maris,Phys. Rey.B31, 4508 (1985). { Paﬂ(x) P/aﬁ(m) }

21) K. Yakubo, T. Nakayama, J. Maris, Phys. Soc. JpnB60, =+ , (46)
3249 (1991). (z—2)2 (z-2)

22) T. litaka, _“Co_mputing_ the _real-time Green's Funct.ion_ofby performing the partial integrations. Noting that3 > —1,
large Hamiltonian matricesHigh performance Computing in it clearly vanishes at = +1
RIKEN 1995 ISSN-1342-3428, 241 (1996). )
23) T litaka. S. N H. Hi X Zhao. Y. A i Ts The above proof covers the cases of Legendre, Tchebyshev
) T.litaka, S. Nomura, H. Hirayama, X. Zhao, Y. Aoyagi, T. Y9 and Gegenbauer polynomials. The proof goes almost the same
ano,Phys. ReyB56, 1222 (1997). . .
. . way for Hermite and Laguerre polynomials.
24) Matsumotoet al., in preparation.
2. Analytical Continuation for Jacobi Polynomial
Knowing the differential equation for the polynomial, we
can readily derive the ADE. In the case of Jacobi, B@®) (
) results. Taking again this case as a representative, we describe
Appendix in detail how the analytic continuatiah, (¢ & id) is obtained,
A Determination of Adjoint Functions and their An- ~ assuming that the two indices 5 have non-integral values.
Ivtic Struct Equation (8) is canonical, with the three singularities at
alytic Structure z = +1 andz = co. The Papperitz indices are readily iden-
In this appendix we complement the argument in Sedified. Using the Riemann symbol, the general solution is de-
tion 11.2, by giving a thorough discussion of the ADE solutionghoted as

and their analytical continuations, (¢ + ¢§). This elucidate 1 41 o
the mathematical structure of the polynomial expansion in the Paﬁ(z) —p 0 0 n+1 - (47)
complex frequency plane. It also gives the correct analytic " B a —(m+a+p)

expressions for the initial terms tabulated in Appendix B.
Since we first wish to obtain the expression about the infinity,
1. Adjoint Differential Equations and Bilinear Concomi-  we transform it into the reduced form, i.e. shift the singulari-
tant tiestoz = 0, 1 andoo. This is done by changing the variable
The argument in Section 11.2 relies on a special property €ither to(1 + z)/2 or (1 — z)/2, and the Papperitz indices
of the Hilbert transformation1(7). By this transformation, a femain unchanged by these transformations.

canonical second order differential equatifpy(z) = 0 is Using the former variable, we can immediately see that
written by partial integrations as the solution compatible with the asymptotic behavioid)(
is given by
b
dr(z — )" Lov(x) N 1\
/a P (2) (1 )
+P(z,2,0)|g=p — P(2,2,0) |22 =0, (44) T2

2
where the functionaP(z, =, v) represents the marginal con- XE(n+1ntf+12n+a+f+2] 1+ z)

tributions, andC, denotes the same operatoras with the
variable being replaced. ~ 1)z (48)
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whereF' is the hypergeometric function. The constant of thso do the corresponding terms in EgE9)( This also applies
proportionality in the first line must b&{™ in accordance to the Legendre polynomial(= 3 = 0), and we discuss this
with Eq. (14). Itis calculated from Eq.1@3) as case separately below. In fact this divergence is a spurious
one; they are shown to cancel each other. Anyhow it does not
rte P (@ +n+ (B +n+1) (4g) bother us in the recursive algorithm described in Section 1.3,

Kn) — .
" I(a+pB+2n+2) which covers all the cases on equal footings.

Representing the hypergeometric function as a series expan-

sion, the solution48) is convergent only outside the left circle ] . . )

of radius two, shown in Fig. 1, centered en= —1. There- 3. Analytical Continuation for Other Polynomials

fore it must be analytically continued into the circle (region

). This is done by using the joining equation connecting thél) Legendre PolynomiaP, (z)

two hypergeometric functions around= co andz = 0, with

the variablez being replaced byl + z)/2. In order to write Legendre polynomial belongs to the family of Jacobi, but
it in a form involving the trivial solutionw(z)p, (z), we fur-  we can apply different joining equations in this particular case
ther make use of another joining equation referring to the twim obtain

singular points on the real axis. The result is
- (n)2 27t  n41 n+2 3.1

~ Pn = r ) ; PR
PoB(z) = — (1 - 2)%(—1— 2)PPoB(2) (2) Gninizrl g g gl )
sinm3
(2112500t a4+ DI(E) = 2Q02), (°3)
Pln+a+f+1) where the functiorQ,, (z) is called the Legendre function of
xF(n+1,—a—8—nll-j| 1+ 2)7 (50) the second kind. The terminology of the "second kind" often
2 refers only to the real part @,,(e+i0). Denoting it byQ,, (¢),
where the first term comes from we have a divergence-free expression
I'n+1+«) 1—z 5 Lo )
By - NPT 2T e 1 1 P,(e+ i) =2Q,(e) FinP,(e) , (54)
PP (2) T T ) F(—n,n+a+8+1|a+1| 5 ), ( ) (€) (€)

, _ (51)  which coincides with the familiar definition
using the relatiod’ (—t)I'(¢t + 1) = —x/sin wt.

In exactly the same manner, an alternative expression is 1 ' Py(z)
obtained by choosinfll — z)/2 as the variable: Qn(e) = §P/_1 Ediﬂ : (55)
PoB(z) = —— " (=14 2)%(1+ 2)P PP
() = ———— (-1 4 2)(1L+2) PP ()

Y(r
20+8T (n + B + 1)T(x) (2) Tchebyshev and Gegenbauer Polynoniiglgr), C;) (x)

'n+a+p+1)

Jacobi polynomials with symmetric indices (= ) are
1—2 ). (52) usually distinguished by the name of Gegenbauer polynomial,
2 adopting a different normalization

This expression is valid in region Il in Fig. 1. By using Kum-

mer’s relation, the two expressions are shown to be identi- ¢ () = L(n+29)I(y + 1/2)]3“/—1/2 =1/2(z) . (56)
cal in the common convergence region (the hatched area in rey)rin+~y+1/2) "

Fig. 1). The analytic continuation is then carried on, down tci_ . _ .
the real axis, to yield the two alternative expressions as shownji"S leads to a simpler recurrence relation, but the results are

in Egs. (19). They are identical as they should be, and thi?aSIcalIIy t.he §ame as already given for inCOb" o

gives the complete solution to the problem. Exception is the case of = 0, for which C7i(z) is ill-
There is a subtle point in the above derivation about thdefined and an yet different normalization is to be adopted:

branch cut. The functio#'(a, b|c|1/z) has a cut along the (2712

real axis fromz = 0 to z = 1, so the joining equations must T,(z) = : pn—1/2 ‘1/2(55) ) (57)

be used for Eq.48) taking this constraint into account. This (2n)!

specifies the Riemann sheettor < arg(—z) < +m, with

a cut betweerr = —1 andz = +1 as is shown in Fig. 1,

in either case of Eqs5(0) and 62). It prevents these two = Lo 2N—1/2 )

functions to be multi-valued for the non-integral indices. Tu(e+i8) = —n(1 =) V() £iTu(e)] . (58)
So far we have assumed the indiecesand 5 to be both

xF(n+1,—a—p§—n|l—aq]

This is Tchebyshev polynomial, and the corresponding AF is

where
non-integers. To be precise, E§QJ is valid only for a non-
integral value of3, whereas Eq52) for a non-integradv. Oth- on—lp) o1
. . ) o 24 o 2y1/2pl/21)/2
erwise the respective terms involve contributions that blow up, Vale) = @n — 1) (L—27) /7P (e)  (59)
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is the second kind solution of the Tchebyshev equation

(Vo(e) = 0 by definition). A remarkable feature of this poly- ~ )

nomial is the simplification of Eq5@), Hoy, (e +140) = Fime™ ¢ Hay(e)

+(=1)" 7222 ) eF(n +1,3/2 | — €2)

To(e+id) = Tin(l—e) YV2eTi(l— €)Y
i o Find -
- % (e=cosh),  (60) Hopir (e £i6) = Fime< Hop1(e)
—(—1)"7r1/222"+1n! eF(n+1,1/2] - €?).
a property which has been extensively exploited in the K&PM. (65)

Apart from the numerical factors, the real parts of E&S) (

(3) Hermite PolynomiaH,,(x) are identical to the Hermite functions of the second kind times
the weight function.

The definition interval of this polynomial is-oo, c0), and

two different conventions are commonly used for the weigh4) Laguerre Polynomial? ()

function; w(x) = e~ or = e~*"/2. We adopt the former.

The corresponding ADE is This polynomial is defined in the interval 6f < =z < o
with w(z) = 2%~ %, a > —1. The ADE is given by

H!(2) 4 22H! (2) +2(n + 1)H,(2) = 0. (61)
2
. d - .
This is a differential equation without singularities. HoweverZ@L%(Z) +lz+ (- O‘)]@L%('z) +(n+1)Ln(2) =0,

it can be transformed to the form of a confluent hypergeomet- (66)
ric equation by setting = —z2, and takes the form of confluent hypergeometric equation by

choosing—z as a variable. Taking again the functibh for
the solution and determining the constant by Hd)(we have

2
{ciarar-op-"Flm-0 @
LYz) = (—1)"T(n+ a+ DUs(n+ 1,1 —a| — 2). (67)
The two independent solutions of the above equation are
F(n/2+1/2,1/2|¢) andzF(n/241,3/2|¢), whereF (a,c|¢)  The expression is valid for all values af > —1. Whena is
denotes the confluent hypergeometric function. Here again W@t an integer, we obtain
must take into account the asymptotic conditi@d)(for tak- .
ing their linear combination. It is, however, less trivial inthe ~ Ln(e £46) = (7 colma Fim )e*e™ Ly (e)
present case, because these two solutions are known to show —TI'()F(n+1,1—a|—c¢€). (68)
"Stokes’ phenomenon”. That is, they have different asymp-
totic behaviours, depending on the directions pointing to thé&/henq is an integer, we have the same divergence as we have
infinity.’ The two linear combinations which suppress thenet in the case of Jacobi polynomial, which is again handled
Stokes phenomenon are thenfluent hypergeometric func- properly in the recursive calculation.
tions of the third king

U, <n+1 1 ) N (2eC B Table for the Recursive Calculation

[P | C
2 2 For practical application of the RPE for the resolvent ex-
Uy (n +1 7 1 | C) ~ (THD/25iE D (g3) pansion, we only needs, (e £ i0) and the coefficients for the
2 72 simultaneous recurrence formulae, particuladly, B!, and
) , . C! in Eq. 29). We list them below for all the polynomials
The second function meets the asymptotic conditidd).( gy died in this paper. Other parameters are found in standard
In determining the proportionality constant, the phase of the.hooks. In this table it is understood th@ = 0 for all
half-integral power must be chosen carefully, considering the;ses and the index or 3 is assumed not to be an integer.
branch cut betweeq = 0 and( = —oc. We obtain The results for the integral indices are given by EG8) and
a1 1 (24). For using Hermite and Laguerre polynomials, it is rec-
H,(z) = (-=1)"'nlx'/2U, ( = g) . (64) ommended to normalize them to unity prior to regulation, in
2 2 order to reduce numerical overflow.

This expression is rewritten by a linear combination of the two

confluent hypergeometric functions. In doing so, it is to be re-

called that the variablé crosses the cut df; whenz crosses LegendreP,(z) : w(z) =1

the real axis. Therefore one must use different phase factors

for the respective terms on the second Riemann sheet. Ex- 4, =2n+1, B, =0, C; =1
plicit expressions foﬁn(e +140) are then obtained separately ~ ] e+1 )
for even and odd degrees: Poleid) =In|— ’ o
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Tchebyshevl), (z) : w(z) = (1 — x?)~1/2 Laguerre L (z) : w(x) = z%™*

A =2(n+1), B, =0, C;:Zii (4 = 1) A =-1, B. =1, ¢, =0
Tole + i6) = Fimw(e) L& (e £140) = w(e)( w cotra Fim )
—T()F(l,1—a|—c¢)
Jacobi P28 (z) : w(z) = (1 —2)*(1 + )P
gy @ntotB+)nta+B+2) Hermite H,(z) : w(z) ="
' “ _Qﬂ(?(;“na:f:ﬁli ) Al =2(m+1), By,=0, C\=0
Hy(e +146) = 2v/meF(1,3/2| — €2) T imw(e)

B;:_(n+a+ﬁ+1)(2n+a+5)
o — (n+a)(n+B)2n+a+B+2)
" (nta+pB)nta+B+1)2n+a+B)

PP (e +id)
= w(e)(—7 cotmra Fim)
20HPT (a)T(B + 1) 1—¢
= w(e)(mw cotmfp Fim)
208 (BT (e + 1) l+e
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