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Application of orthogonal polynomial expansion to quantum simulations is formulated on a general footing, imple-
menting the regulation technique by Sota and Itoh for treating for the Gibbs oscillation. It is an alternative to the kernel
polynomial method using Tchebyshev polynomial, but is simpler to handle and makes it possible to use all the popular
orthogonal polynomials, covering finite, semi-infinite and infinite intervals of the eigenvalue spectrum. The accuracy
can be made equivalent to direct diagonalization, with the resolution being homogeneous in the whole range of the
spectrum. The target quantities can be as diverse as including eigenvectors, as well as all sorts of one-particle properties
and correlation functions, involving thermal average and quantum time evolution. It can also be used as a handy tool
for solving linear algebraic equations.
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I. Introduction

Numerical evaluation of physical quantities through resol-
vent matrix has been one of the popular approaches in compu-
tational physics. To this category belong the most commonly
used continued-fraction technique1) and the kernel polynomial
method (KPM) by Voteret al.2–5) Making use of the three-
term recurrence formula of the orthogonal polynomial, a num-
ber of advantages may be recognized with the latter method, in
terms of the accuracy and the absence of uncertain parameters
like the terminator. Being basically a generalized Fourier ex-
pansion, the central issue is how one can cope with the Gibbs
phenomenon, and the use of Tchebyshev polynomial has been
regarded as essential for this purpose.4)

Recently Sota and Itoh6) used Legendre polynomial as the
basis set, proposing an alternative way to remove Gibbs oscil-
lation. It is called theregulated polynomial expansion (RPE)
and has a very different principle. While the KPM modi-
fies the expansion coefficients to suppress the fluctuations, the
RPE modifies the basis polynomials by the procedure called
regulation, in such a way that the oscillating contributions
from different expansion orders are made to cancel entirely.
The degree of each polynomial is unaltered, but the amplitude
is modified and the zeros are shifted relative to the original
locations. Since the regulated polynomials are produced re-
cursively, the algorithm of the RPE is essentially the same as
the naive polynomial expansion, requiring no additional rou-
tines to remove Gibbs phenomenon.

∗Corresponding author, E-mail: itomasa@riko.shimane-u.ac.jp

Due to the simplicity and even higher controllability of res-
olution, the RPE is expected to extend vastly the range of
physical quantities to be handled by the polynomial expan-
sion. In the original paper, it has been applied to the calcula-
tion of the eigenvectors, with the accuracy being equivalent to
the direct diagonalization. Applications to the electron trans-
port and Anderson localization were then attempted.7,8) Fur-
ther the scheme was transferred to the imaginary-time domain,
being applied to the finite-temperature calculations of correla-
tion functions of strongly correlated electrons and frustrated
spin system, combined with the technique of the density ma-
trix renormalization group (DMRG).11–13)

In view of the above ongoing developments and further po-
tential applicability, we attempt in the present paper to formu-
late the method on a general ground, without specifying the
basis polynomial. This generalization enables us to make use
of all the polynomials, defined not only in a finite but also
in semi-infinite and infinite intervals of the eigenvalue spec-
trum. Reviewing our earlier results, we examine the working
order of the method more closely, clarifying its mathematical
structure and fundamental properties of the kernel function.
A particular emphasis is laid on resolvent, but we also dis-
cuss various extensions from a unified viewpoint. Particularly
the time-evolution operator is carefully examined with some
numerical studies.

The paper is organized as follows. In Section II we briefly
summarize the polynomial expansion of resolvent expansion.
The mathematical structure is studied carefully, as well as its
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recursive structure and relationship to the moment expansion.
In Section III we formulate the regulation technique, and show
some numerical examples to see how effectively it removes
the Gibbs phenomenon. Various applications are discussed
in Section IV, including the calculations of eigenvectors and
quantum time evolution. The final section is devoted to a
summary. Some mathematical details are described in Ap-
pendix A. In Appendix B, we tabulate all the necessary inputs
for invoking the RPE. Although the paper is rather intricate
mathematically, a quick reference to this table will suffice for
using the method.

II. General Framework of Polynomial Expansion
and its Application to Resolvent

In this section we formulate the naive polynomial expan-
sion of resolvent, without caring for the Gibbs phenomenon.
The latter problem will be discussed in the next section. We
shall give in Appendix A the explicit expressions for the ex-
pansion coefficients, for all the popular polynomials, with de-
tailed proof for each. Here we only outline the mathematical
argument and present a practical way to calculate them.

We only demand the three basic properties for the polyno-
mial set: ∫ b

a

dxw(x)φn(x)φn′(x) = wnδn,n′ , (1)

δ(x− x′) = w(x)
∑
n

w−1
n φn(x)φn(x

′) (2)

and

φn+1(x) = (Anx+Bn)φn(x) + Cnφn−1(x) . (3)

Hereφn(x) represents a polynomial of degreen belonging to
the basis set,[a, b] is its definition interval,wn the normal-
ization constant andw(x) the weight function. To this family
belong Legendre, Tchebyshev, Jacobi, Laguerre and Hermite
polynomials, but we can make use of many others, as long as
the conditions (1)-(3) are satisfied.

Now suppose that we wish to handle the operation of a
function of a quantum operator̂Ω, f(Ω̂), on a vector|ξ >.
The matrix size of̂Ω may be quite large, involving many de-
grees of freedom. Typical examples are the functions of the
HamiltonianĤ, e.g. the kernel operatorδ(ϵ − Ĥ), resolvent
[z − Ĥ]−1, the time evolution operatore−iĤt or the density
matrixe−βĤ . We expandf(Ω̂) as

f(Ω̂) =
∞∑

n=0

w−1
n fnφn(Ω̂) , (4)

where

fn =

∫ b

a

dxw(x)φn(x)f(x). (5)

Then handling the operationf(Ω̂)|ξ > is easy, because each
termφn(Ω̂)|ξ > is evaluated recursively using (3),

φn+1(Ω̂)|ξ >
= (AnΩ̂ +Bn)φn(Ω̂)|ξ > +Cnφn−1(Ω̂)|ξ > . (6)

This leads to an ideal order-N scheme, because onlyN matrix-
vector (not matrix-matrix) multiplications need to be executed
for the truncation orderN . In practice, we need to know the
expansion coefficientsfn for each functionf . We will discuss
the case of resolvent in this section. Other cases are relatively
easy.

1. Resolvent and Adjoint Functions

In many branches in physics, Green function method is one
of the most useful techniques. It uses resolvent operator

Ĝ(z) = (z − Ĥ)−1 , (7)

whereĤ is the Hamiltonian andz the complex frequency pa-
rameter. This corresponds tof(x) = (z − x)−1 andΩ̂ = Ĥ
in Eq. (4), and our concern is how one can evaluate its matrix
elements effectively. Equations (4) and (5) then read

Ĝ(z) =
∞∑

n=0

w−1
n φ̃n(z)φn(Ĥ) (8)

and

φ̃n(z) =

∫ b

a

dx
w(x)φn(x)

z − x
(9)

respectively. Here we have used the symbolφ̃n(z) instead of
fn, in order to show explicitly the dependence onz and the
relevance toφn(x). We callφ̃n(z) theadjoint function (AF)
to φn(x). In practice, we need their analytical continuations
φ̃n(ϵ ± iδ) onto the real axis. We will discuss it in some de-
tail in the following two subsections. It is obvious that their
imaginary parts are given by

Imφ̃n(ϵ± iδ) = ∓πw(ϵ)φn(ϵ). (10)

The corresponding part of resolvent,

δ(ϵ− Ĥ) = w(ϵ)
∞∑

n=0

w−1
n φn(ϵ)φn(Ĥ) , (11)

is called the kernel operator.
The expansion (8) has some relevance to the moment ex-

pansion. The AF of then-th degree is expanded around the
infinity as

φ̃n(z) =

∞∑
m=n

K
(n)
m

zm+1
, (12)

with the coefficientsK(n)
m defined by

K(n)
m =

∫ b

a

dxxmw(x)φn(x). (13)

Note that the summation overm in Eq. (12) is restricted to
m ≥ n, sinceK(n)

m = 0 for m < n due to the orthogonality
of the polynomials. This leads to an important asymptotic
condition at the infinity,

lim
|z|→∞

zn+1φ̃n(z) = K(n)
n . (14)
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When the expansion (8) is truncated at somefinite orderN ,
Eqs. (8) and (12) may be written as

ĜN (z) ≡
N∑

n=0

w−1
n φ̃n(z)φn(Ĥ) =

∞∑
m=0

µ̂m

zm+1
(15)

with

µ̂m ≡
N∑

n=0

K(n)
m φn(Ĥ) . (16)

Here the subscript of̂GN is to indicate the truncation order.
The trace of the operator̂µm gives an approximate expression
to them-th order moment of the frequency spectrum. It is
actually exact form ≤ N , becausêµm is then identical to
Ĥm. So the moments of the DOS are conserved strictly up
to the order of the truncation. For higher-orders (m > N ),
Eq. (16) still gives an optimal approximation tôHm, in the
sense that it minimizes the squared norm||µ̂m−Ĥm||2 with a
limited number of polynomials, which is the major difference
from the moment expansion.

2. Determination of Adjoint Functions
The determination of the AF through the integration (9)

is generally not elementary. Particularly one must be careful
about its proper analytical continuation to obtainφ̃n(ϵ ± iδ).
However it can be carried through via a different root. The
argument is fairly involved, and we give here only a brief ac-
count, taking Jacobi polynomial as a representative case. A
thorough discussion is given in the Appendix A.

First, we note that Eq. (9) may be regarded as a special case
of Hilbert transformation

ψ(z) =

∫ b

a

dx(z − x)−1v(x) . (17)

This transformation allows one to express differentiations on
ψ(z) by those onv(x), by partial integrations. In particu-
lar, whenψ(z) satisfies a canonical second-order differential
equationLzψ(z) = 0, v(x) is shown to satisfy the same equa-
tion Lxv(x) = 0, if the marginal contributions resulting from
the partial integrations vanish.14) This is indeed the case for all
the popular polynomials (see Appendix A), so we can readily
derive the differential equation for̃φn(z) from that forφn(z).
We call it theadjoint differential equation (ADE). In the case
of Jacobi polynomialPαβ

n (x), the ADE becomes

(z2 − 1)
d2

dz2
P̃αβ
n (z)

−[(α+ β − 2)z + (α− β)]
d

dz
P̃αβ
n (z)

−(n+ 1)(n+ α+ β)P̃αβ
n (z) = 0. (18)

Here we have denoted bỹPαβ
n (z) the AF associated with

Pαβ
n (x). The same convention will also be adopted for other

polynomials throughout this paper. Other ADE’s are readily
written down for the respective polynomials. Generally, they
are given in Papperitz canonical forms, with the three regular
singular points atz = a, b andz = ∞, but it can happen that
two of these singularities are merged into a confluent type.

Ⅰ ⅠⅠ+1-1 Re zIm z
Fig. 1 Convergence circles of the two functions (50) and (52) leading to

the two expressions in Eq. (19). They are identical in the common area
(hatched). The bold line connectingz = ±1 is the branch cut.

The physical solution tõφn(z) is generally constructed by
taking a linear combination of the two independent solutions
of the ADE, one of which may be taken to bew(z)φn(z).
In doing so, the asymptotic condition (14) is to be consulted
to determine the combination uniquely. It is then analytically
continued onto the real axis to obtaiñφn(ϵ± iδ). The contin-
uation yields two branching points atz = a andz = b, as well
as the branch cut connecting them. The case of Jacobi poly-
nomial is a little intricate, because two different functions can
result from this procedure, i.e., Eqs. (50) and (52). They are
identical in the common area of the two convergence circles
shown inFig. 1, and two alternative expressions are obtained,

P̃αβ
n (ϵ± iδ)

= [ π cot(πβ) ∓ i π ] · (1− ϵ)α(1 + ϵ)βPαβ
n (ϵ)

+2α+β(−1)n+1Γ(β)Γ(α+ n+ 1)

Γ(α+ β + n+ 1)

×F (n+ 1,−α− β − n|1− β|1 + ϵ

2
)

= [−π cot(πα) ∓ i π ] · (1− ϵ)α(1 + ϵ)βPαβ
n (ϵ)

+2α+β Γ(α)Γ(β + n+ 1)

Γ(α+ β + n+ 1)

×F (n+ 1,−α− β − n|1− α|1− ϵ

2
) , (19)

whereF (a, b|c|z) denotes the hypergeometric function.
There is another complication in Eqs. (19): in either of the

two expressions, the two separate terms involve divergences
respectively, when either of the two indices (α, β) is an inte-
ger. It is apparent for the first terms due to the co-tangents.
A similar divergence also occurs in the case of Laguerre, but
these problems are spurious and circumvented as shown in the
next subsection.

3. Recursive Structure of Adjoint Functions
The preceding discussion, together with the complement in

Appendix A, clarifies the mathematical structure in the com-
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plex frequency plane. However, evaluatingφ̃n(ϵ±iδ) through
the expressions like Eqs. (19) to the higher degrees is not too
convenient. Instead, we may make use of the recurrence for-
mulae

φ̃n+1(z) = (Anz +Bn)φ̃n(z) + Cnφ̃n−1(z) , (20)

φ̃1(z) = φ̃0(z)φ1(z)−A0w0 (21)

for evaluating those functions. The above formulae, the
first of which takes the same form as Eq. (3), are readily
proven by using Eqs. (3) and (9) and noting that the integral∫ b

a
w(x)φn(x)dx vanishes whenn ≥ 1. We thus need only

the initial functionφ̃0(ϵ± iδ).
At first sight, the forms of̃φn(z) for higher degrees antici-

pated from Eq. (20) may appear at variance with Eq. (12). But
the asymptotic form is assured by the following identity

K(n+1)
m = AnK

(n)
m+1 +BnK

(n)
m + CnK

(n−1)
m , (22)

which is proven by multiplying Eq. (12) byw(x)xm and then
integrating overa < x < b. Note, also, that the branching
points of φ̃0(z) are inherited successively to the higher de-
grees, so that all the functions̃φn(z) share the same cut.

The initial functions are tabulated in Appendix B, except
for the cases of Jacobi and Laguerre polynomials with integral
indices. Integral indices are obviously common in comparison
to non-integral ones, but cause apparent divergences, as men-
tioned in the preceding subsection. As for the initial term,
however, divergence-free expressions are obtainable directly
from (9),

P̃αβ
0 (ϵ± iδ) = w(ϵ)×

(
ln

∣∣∣∣1 + ϵ

1− ϵ

∣∣∣∣ ∓ iπ

)
+

α∑
µ=1

2α+β

α− µ+ 1

(
1− ϵ

2

)µ−1 (
1 + ϵ

2

)β

−
β∑

ν=1

2α+βα!(β − ν)!

(α+ β + 1− ν)!

(
1 + ϵ

2

)ν−1

(23)

and

L̃α
0 (ϵ± iδ) = w(ϵ)× (−Ei(ϵ) ∓ iπ)

−
α∑

µ=1

(α− µ)! ϵµ−1 , (24)

wherew(ϵ) represents(1− ϵ)α(1 + ϵ)β for Jacobi andϵαe−ϵ

for Laguerre. Equation (23) coincides with the result for Leg-
endre whenα = β = 0 (Appendix B), for which only the first
term is relevant.

III. Gibbs Oscillation and Regulation

1. Regulated Polynomial
The argument in the preceding section completes the for-

mal polynomial expansion of resolvent. The problem of the
Gibbs phenomenon is yet to be overcome. We show inFig. 2
the frequency spectrum of a lattice vibration, calculated by

0.2

0.4

0.6

0.8

1

1.2

-0.4

-0.2

0

0.2

-5 0 5 10 15

2ω

Fig. 2 The eigenvalue spectrum of a SC lattice vibration of193 atoms,
without treatment for the Gibbs oscillation. Legendre polynomial is used
with the truncationN = 103.

using the expansion (11) with Legendre polynomial. The sys-
tem we studied is a simple-cubic lattice of193 atoms with the
nearest neighbour force constant. The periodic boundary con-
dition has been adopted for constructing the dynamical matrix.
The size of the matrix is typical of ordinary numerical studies,
and the bulk spectrum of the model is calculable analytically.
As is seen from the figure, most of the important physical in-
formation is lost by the violent fluctuations. The problem is
actually in two ways; firstly due to the Gibbs phenomenon,
and secondly due to the discrete nature of the spectrum. It is
therefore important, for a modest size of the matrix, to distin-
guish between the two different effects numerically.

Sota and Itoh6) showed that the former effect is entirely
eliminated by using theregulatedpolynomial

⟨φn(x)⟩σ ≡ 1√
2πσ2

∫ b

a

dx′e−(x′−x)2/2σ2

φn(x
′) (25)

as the new basis set, instead of the original polynomial set
φn(x). The resultant expressions for resolvent and kernel op-
erators are

⟨
ĜN (z)

⟩
σ
=

N∑
n=0

w−1
n φ̃n(z)

⟨
φn(Ĥ)

⟩
σ

(26)

⟨
δN (ϵ− Ĥ)

⟩
σ
= w(ϵ)

N∑
n=0

w−1
n φn(ϵ)

⟨
φn(Ĥ)

⟩
σ
. (27)

This is the regulated polynomial expansion (RPE). Its effec-
tiveness is illustrated in the next subsection. For its practi-
cal use, the above authors noted that⟨φn(x)⟩σ may be re-
garded as a polynomial ofn-th degree for sufficiently small
σ, since the integration in Eq. (25) can be practically extended
to −∞ < x′ < ∞. Further they found that these "pseudo
polynomials" may be evaluated by a set of recursive relations

⟨φn+1(x)⟩σ = (Anx+Bn) ⟨φn(x)⟩σ + Cn ⟨φn−1(x)⟩σ
+σ2An ⟨φ′

n(x)⟩σ (28)

and⟨
φ′
n+1(x)

⟩
σ

= A′
n ⟨φn(x)⟩σ +B′

n ⟨φ′
n(x)⟩σ + C ′

n

⟨
φ′
n−1(x)

⟩
σ
. (29)
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In the original paper the above relations were derived only
for Legendre polynomial, but the same kinds are available for
all the popular polynomials. The first relation is readily de-
rived from Eq. (6) and Eq. (25). It involves a derivative term
coming fromxφn(x) in Eq. (3). Note that the differentiation
and the regulation may be performed in the reversed order,
i.e., ⟨φ′

n(x)⟩σ = d/dx ⟨φn(x)⟩σ. The second relation is a di-
rect consequence of the same relation among theunregulated
polynomials. The coefficientsA′

n,B′
n andC ′

n are tabulated in
Appendix B for all the popular polynomials, since the authors
did not find all of them in the literature.

The above closure relations may be used with a matrix vari-
able in substitution for Eq. (6). This algorithm requires only
a minimum modification of the naive expansion. Since only
a single matrix-vector multiplication is involved in Eqs. (28)
and (29), there is no appreciable change in the computation
time. We emphasize that, unlike the conventional method-
ology for suppressing Gibbs oscillation, the RPE does not
merely damp the higher-orders in the expansion. Instead it
rather modifies the basis set, in such a way that the oscillating
contributions from different orders are made to cancel. For
example, it also involves re-location of the zeros of the poly-
nomial.

2. Kernel Functions and Eigenvalue Spectrum
The effect of regulation is best illustrated by examining the

kernel function, i.e. the eigenvalue of the kernel operator. In
Fig. 3, we make comparison between the regulated and unreg-
ulated kernel functions, calculated by using Legendre polyno-
mial. The former is given by

⟨δN (ϵ− ϵα)⟩σ = w(ϵ)

N∑
n=0

w−1
n φn(ϵ) ⟨φn(ϵα)⟩σ , (30)

whereϵα represents an eigenvalue of the Hamiltonian. It may
be regarded as a Fourier expansion of the normal distribution
function used in Eq. (25), so the RPE kernel is designed to be
close to it:

⟨δN (ϵ− ϵα)⟩σ ≃ 1√
2πσ2

e−(ϵ−ϵα)2/2σ2

. (31)

As we show in the next subsection, the accuracy of the above
approximation is extraordinary for an optimal value ofσ,
which can be made arbitrarily small by choosing a largerN .
The bestσ is practically independent of the eigenvalueϵα.

ε

0

100
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300

0 0.1 0.2 0.3 0.4

ε

N/2πσ ≈

0

50

0 0.1 0.2 0.3 0.4

Fig. 3 Comparison between the two kernel functions with Legendre poly-
nomial. Left: without regulation, right: with regulation. Hereϵα = 0.2
and the value ofσ is taken to be2π/N on the right.

The similarity to the normal distribution is also reported in
the case of Jackson kernel in the KPM,4) but there is a funda-
mental difference between the two cases. First, the latter func-
tion is constructed by different principles, so deviates consid-
erably from normal distribution. Also, the variance of Jack-
son kernel depends explicitly on the eigenvalue, causing an
inhomogeneous resolution.4,5) These points will be discussed
quantitatively in Section III.3.

Due to the above properties of the RPE kernel, the RPE
spectrum

D(ϵ) =
∑
α

⟨δN (ϵ− ϵα)⟩σ (32)

is positive and strictly normalized, with a homogeneous reso-
lution in the whole range of the spectrum.Figure 4 shows its
applications to the same phonon spectrum studied in Fig.2,6)

with low and high truncation orders. In each case, the pa-
rameterσ is set equal to its optimal value2π/N (this value
will be confirmed in Section III.3). In either case, the Gibbs
oscillation is completely eliminated. For the present matrix
size, a relatively low-truncation calculation shown on the left
(N = 200) provides a best simulation of the bulk, resembling
the analytic solution. The high-truncation calculation on the
right, on the other hand, shows the precise spectrum of the
finite matrix. The spikes are by no means due to the Gibbs
oscillation, but solely to the discreteness of the spectrum. The
discrete character starts to show up aroundN ≃ 2×105; here
the resolution has been increased by far. By comparing to
the direct diagonalization, the location and the height of each
peak have been confirmed to give the correct eigenvalue and
degeneracy, to the accuracy of the six digits.

The same calculation has also been attempted with the two
Jacobi polynomials, withα = β = −1/2 and+1/2. The
former case is equivalent to using Tchebyshev. The results are
indistinguishable from the case of Legendre (α = β = 0),
although a very fine Gibbs oscillation was found to persist in
the case of Tchebyshev.

200=N

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-5 0 5 10 15

)105( 5×=N40

20

0

100 5

iiGRe

iiGIm

iiGIm

2ω 2ω

Fig. 4 Re-calculation of the same spectrum as shown in Fig.2,6) using reg-
ulated Legendre polynomial. Left: low truncation order (N = 200), right:
high truncation (N = 5× 105). The resolution is set to beσ = 2π/N in
the both cases.

3. Optimal Resolution and Kernel Operator

The optimal value ofσ can be searched for by minimizing
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the squared norm

IN (σ) ≡
∫ b

a

dϵw(ϵ) | ⟨δN (ϵ− ϵα)⟩σ

− 1√
2πσ2

e−(ϵ−ϵα)2/2σ2

|2 (33)

with varyingσ for a givenN . This integration represents the
deviation of the kernel function from the normal distribution.
It is plotted inFig. 5, on the left. As is seen from the figure,
the norm decreases rapidly and monotonically as we increase
σ. It goes down to the smallest values that are barely dealt
with by double precision. In searching for the bestσ, we have
therefore set a criterion thatIN (σ) ≤ δ, whereδ is a small
positive number, and chose the smallestσ to satisfy this cri-
terion. On the right in the same figure we show the results
with δ = 5 × 10−16, a value just starting to cause numeri-
cal underflow. We have repeated the above calculation for all
the polynomials listed in Appendix B. In every case,σ(N)
is fitted very precisely byσ(N) = C/Nα. Here the index
α is strictly unity for the polynomials defined in the interval
[−1,+1], and1/2 for Laguerre and Hermite. The value of
C depends appreciably onδ; there is a tolerable range ofC
for eachδ and for each polynomial. In the case of Legendre,
δ = 10−8 corresponds to4 ≤ C ≤ 8. SoC = 4 may be used
to attain the highest resolution within this accuracy. Going be-
yond this range causes eventual blow-up of the norm. It seems
that the best value for an oscillationless kernel is obtained by
C = 2π, for all δ.

We have not specified the value ofϵα in Fig. 5. Actually we
found thatIN (σ) is practically independent ofϵα whenN is
relatively large; we do not see the difference in the scale oused
in Fig. 5. The variation ofIN (σ) with ϵα is comparable toδ,
unless the values ofϵα are too close to the limits of the defini-
tion interval. With such restrictions onN andϵα in mind, the
fact implies a completely homogeneous resolution of the RPE
spectrum. Also we may express Eq. (31) in the operator form,⟨

δN (ϵ− Ĥ)
⟩
σ
≃ 1√

2πσ2
e−(ϵ−Ĥ)2/2σ2

. (34)

This "analytic" expression is useful in using the RPE in the
time or the finite temperature domain (Section IV.5). The ac-
curacy of Eqs. (31) or (34) is assuredeven for a relatively
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Fig. 5 Left: squared norm (33) for the regulated Legendre kernel, as func-
tions ofσ. Right: smallestσ to satisfyIN (σ) ≤ 5 × 10−16. The calcu-
lated values are very well fitted byσ = 2π/N , as shown by the inset on
the right.
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Fig. 6 Comparison between KPM Jackson and Legendre RPE kernels for
N = 2000, with optimal and non-optimal values ofσ for the latter case.
The small oscillations in the RPE kernel pointed out by Schleedeet al.9)

are not visible in the magnified scale.

smallN . In this connection we note that the variance of the
RPE kernel is fixed strictly toσ and the first moment to zero,
irrespective ofϵα andN .

We also note that the above characteristic of the RPE kernel
is considerably different than that of the KPM. Being practi-
cally identical to the normal distribution, the RPE kernel is
evidently oscillationless, as opposed to the criticism raised re-
cently by Schleedeet al.9) The resolution is uniform and de-
pends only onN . In the KPM, the Jackson kernel becomes
asymmetric and varies its width, as the eigenvalue goes away
from the center of the spectrum. The squared norm corre-
sponding to Eq. (33) is of the order of unity and increases with
increasingN . In fact the Jackson kernel carries many satel-
lite peaks representing the uneliminated Gibbs oscillation, as
shown inFig. 6. Those satellite peaks grow with increasing
N . The above authors claim that residual oscillations exist in
the Legendre RPE kernel forσ = 4/N , but such oscillations
are bymanyorders of magnitude smaller than those satellite
peaks, if an optimalσ is used; more than two orders smaller
even forσ = 4/N , which is not optimal.

IV. Other Applications

In Sections II and III we have focused on resolvent and
eigenvalue spectrum. In this section we briefly summarize
other immediate extensions of the methodology.

1. One-Particle Properties

The RPE can be applied to various spectrum-related prop-
erties directly. For example, the integrated density of states is
calculated as follows:

N(ϵ) =
∞∑

n=0

w−1
n ξn(ϵ)Tr

⟨
φn(Ĥ)

⟩
σ
, (35)

whereξn(ϵ) are given by

ξn(ϵ) ≡
∫ ϵ

a

dxw(x)φn(x) . (36)
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With Rodrigue’s formula, the integrand of Eq. (36) becomes a
complete differential whenn > 0, which yields

ξn(ϵ) =


− 1

2nw(ϵ)P
α+1, β+1
n−1 (ϵ) (Jacobi)

−w(ϵ)Hn−1(ϵ) (Hermite)

1
nw(ϵ)L

α+1
n−1(ϵ) (Laguerre) .

(37)

In the above expressions, the weight functionsw(ϵ) are those
associated with the indices given on the right hand sides of
the equations. The expression (35) avoids the numerical inte-
grations and evaluates the integrated density of states directly.
The coefficientsξn(ϵ) are also obtainable recursively.

Many of the integrations involving the frequency spectrum
(or single resolvent) are treated in similar manners. For elec-
tron problems, for instance, the total energy and the higher
order moments of the density of states are given in similar
forms to Eqs. (35)-(37). A somewhat different (and handy)
algorithm was proposed by Sota and Itoh for evaluating them
with Legendre polynomial.6)

2. Correlation Functions

A correlation function is one of the most suitable tar-
gets of the polynomial expansion technique, and the KPM
has often been utilized for this purpose.10) Recently, Sota
and Tohyama11,12) and Sugimotoet al.13) have applied the
RPE to a finite-temperature calculation, developing a com-
bined scheme with the density matrix renormalization group
(DMRG). In these calculations, they deal with the correlation
function of the form

χAB(ω) ∝
∫
dϵ

⟨
δ(ϵ− Ĥ)Âδ(ϵ+ ω − Ĥ)B̂

⟩
, (38)

where⟨· · · ⟩ denotes the finite-temperature statistical average.
For calculating a linear-response function like Eq. (38), the
RPE requires only the repetition of the same algorithm, for
operating different operators successively. The computation
time is proportional only to the number of the functional oper-
ators involved. In principle, there is no limitation in the num-
ber of such operators, so a complex property such as the Hall-
conductivity can be a target quantity.15) For taking a thermal
average, the density matrixe−βĤ and/or the (imaginary) time
evolution operatoreτĤ are to be involved. Such calculations
are more difficult at lower temperatures. Sota and Tohyama
obtained a good accuracy at all temperatures by the RPE, but
a further improved treatment of this operator will be discussed
in Section IV.5.

3. Eigenvectors

The regulated kernel operator (34) serves as an efficient fil-
ter to extract an eigenvector component from an arbitrary ini-
tial vector. On operating it on a vector|ξ >, one obtains

|ξ̄ > ≡
⟨
δN (ϵ− Ĥ)

⟩
σ
|ξ >

=
∑
α

⟨δN (ϵ− ϵα)⟩σ |α >< α|ξ > . (39)

Fig. 7 RPE calculation of an eigenvector of the roton excitation in Ar su-
percooled liquid.16)

Since the weight of each component in the above equation
follows the distribution (31), this enhances the amplitudes in
the vicinity ofϵ, while eliminating those of the remote values.
The renormalization of the vector is taken as granted. Since
the width of the weight can be made arbitrarily small and the
skirt decays strictly according to the normal distribution, the
filtering can be made almost perfect, so that one is able to
pick up only the closest component toϵ. This property of the
RPE kernel operator has been exploited by Sota and Itoh16) for
studying the vortex-like roton excitations of a glassy material.
The result is reproduced inFig. 7.

For a highly degenerate case, the filtered vector may still
have finite amplitudes of the neighbouring components. These
residual amplitudes can be eliminated by repeating the above
cycle, possibly with a smaller width, by adjusting the pa-
rameterϵ to < ξ̄|Ĥ|ξ̄ > and replacing|ξ > by |ξ̄ >. The
above authors attained the accuracy of the six digits, at most
in two cycles, for both the eigenvector and the eigenvalue of
a 20, 000 × 20, 000 matrix. In the case of a real degener-
acy due to symmetry, one may still resolve it completely, by
using different initial vectors to obtain different eigenstates,
and then adopting Gram-Schmidt orthogonalization to the lat-
ter vectors. The same accuracy can not be attained by the
KPM Jackson kernel, due to the extending and growing satel-
lite peaks.

4. Matrix Inversion
The eigenvector calculation described above suggests that

the RPE may be useful for other linear-algebraic problems.
Another interesting application is found by settingz = 0 in
Eqs. (7) and (8),

Ω̂−1 = −
∞∑

n=0

w−1
n φ̃n(0)

⟨
φn(Ω̂)

⟩
σ
, (40)

whereφ̃n(0) refers to the real part of̃φn(ϵ± iδ) for ϵ = 0. It
can be applied, for example, to solving the algebraic equation
Ω̂|ξ >= |ξ0 >, with the solution being obtainable by the same
recursively algorithm as

|ξ >= −
∞∑

n=0

w−1
n φ̃n(0)

⟨
φn(Ω̂)

⟩
σ
|ξ0 > . (41)

This scheme is quite handy and accurate, compared to the ex-
isting standard packages, so expected to be useful in many
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areas, not necessarily in physics. In particular, it does not dis-
criminate a dense matrix and was found to work even for a
non-hermitian matrix. For example, Yamane and Itoh17) have
obtained an accurate solution for a Bethe-Salpeter equation,
for which simple iteration failed to converge.

5. Time Evolution Operator
Time-dependent approaches in quantum simulations have

been studied extensively in recent years,19–23) both in the real
and imaginary time domains. Many of them make use of the
polynomial expansion to the time evolution operatore−iĤt or
its continuation to the imaginary time. Here we discuss the
former operator, because it is visually more illustrative.

In the context of the present paper, it is natural to use the
regulated time evolution operator< e−iĤt >σ. This approach
has been adopted in References11–13, but a more accurate
and convenient expression is available in the RPE:

e−iĤt ≃ eσ
2t2/2

⟨
e−iĤt

⟩
σ

= eσ
2t2/2

N∑
n=0

w−1
n φ̃n(t)

⟨
φn(Ĥ)

⟩
σ
. (42)

The first line of the above expression holds to the same ac-
curacy of Eq. (34) and is proven by using the latter relation,
noting that< e−iĤt >σ is its Fourier transform. Herẽφn(t)
denotes the AF in the time domain, whose explicit expressions
are readily obtained for all the polynomials; the case of Leg-
endre is given in Reference6. It is important to note that the
expression (42) is sufficiently accurate for afiniteN , provided
that an optimalσ is used, because its accuracy is solely due to
Eq. (34) and not to the smallness ofσ. So high precision is
expected at relatively low truncation orders.

As a numerical test, we have examined the time evolution
of a one-dimensional Gaussian wave packet with a harmonic
Hamiltonian

Ĥ = −1

2

d2

dx2
+

1

2
(x− 2)2, (43)

takingψ(x, 0) ∝ e−(x−a)2/2ξ2 as the initial state. The rea-
son for studying this model is the availability of an ana-
lytic solution.18) We used Hermite polynomial for the expan-
sion (42), for which φ̃n(t) = (−it)n

√
πe−t2/4. As for con-

structing the Hamiltinian matrix, we chose the eigenvectors
of the undisplacedoscillator as the basis. This representa-
tion helps us to reduce the matrix size; we found that600
eigenstates are sufficient to expand the wave packet. The dis-
placed Hamiltonian (43) is not diagonal in this representation.
Although the eigenvectors may be given by Hermite polyno-
mials, our choice of the matrix representation by no means
favours the accuracy of the calculation.

Figure 8 is the numerical result fora = 5 andξ = 0.5
of the wave-packet parameters, up to the half-period (t = π)
of the harmonic motion. The expansion (42) was truncated at
N = 650 and we setσ = C/

√
N (C = 2.94). The calculation

was found to reproduce the analytic solution very precisely.
Although our scheme gives the final state directly in princi-
ple, we encounter the numerical underflow fort longer than

0.5

2|),(| txψ

0=tπ=t

-2 0 2 4 6 x

Fig. 8 Probability distribution|ψ(x, t)|2 that evoluted fromψ(x, 0) ∝
e−(x−a)2/2ξ2 (ξ = 0.5, a = 5.0) by the Hamiltonian (43). Calculation
has been done by Eq. (42) using Hermite polynomial, withN = 650 and
σ = C/

√
N (C = 2.94). From right to left: t = 0, 2∆t, 5∆t, 7∆t,

11∆t, andt = π with ∆t = π/13. The time evolution is strictly periodic,
coincident with the analytic solution.

the order of unity. In order to prevent it, we proceeded step by
step, by the interval of∆t = 2π/13, updating the initial state
at each step by the final state of the last step. We continued
the calculation up tot = 200 × π, and it produced numer-
ically stable and precisely periodic time evolution, showing
no indication of starting to deviate from the analytic solution.
Therefore, our methodology appears to assure a very high ac-
curacy with a practical computation time.

The other polynomials can also be used for the time evolu-
tion calculation. A more detailed study of this subject will be
reported elsewhere.24)

V. Summary

We have formulated the orthogonal-polynomial expansion
in a general framework, particularly of resolvent, elucidating
the analytic structure in the frequency plane. Implementa-
tion of the RPE technique has been done for all the important
polynomials to remove Gibbs oscillation. The advantage in
using the RPE is that it achieves both high accuracy and high
speed computing with the simplest algorithm, assuring a com-
pletely homogeneous resolution. Due to a wide availability of
the polynomials, the present generalization has extended the
range of the tractable matrices, covering finite, semi-infinite
and infinite intervals of the spectrum. It has also found a vari-
ety of applications, including correlation functions, eigenvec-
tors, matrix inversion, time evolution and finite temperature
calculations. The possible application of the method is ex-
pected to be more diverse than shown in this paper.
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Appendix

A Determination of Adjoint Functions and their An-
alytic Structure

In this appendix we complement the argument in Sec-
tion II.2, by giving a thorough discussion of the ADE solutions
and their analytical continuations̃φn(ϵ ± iδ). This elucidate
the mathematical structure of the polynomial expansion in the
complex frequency plane. It also gives the correct analytic
expressions for the initial terms tabulated in Appendix B.

1. Adjoint Differential Equations and Bilinear Concomi-
tant
The argument in Section II.2 relies on a special property

of the Hilbert transformation (17). By this transformation, a
canonical second order differential equationLzψ(z) = 0 is
written by partial integrations as∫ b

a

dx(z − x)−1Lxv(x)

+P (z, x, v)|x=b − P (z, x, v)|x=a = 0 , (44)

where the functionalP (z, x, v) represents the marginal con-
tributions, andLx denotes the same operator asLz, with the
variable being replaced.

The functionalP is called the bilinear concomitant.14) If
it vanishes at the boundary, then the two functionsψ(z)
andv(x) satisfy the same differential equation. Indeed one
can proveP (z, x, v)|x=a,b = 0 when v(x) = w(x)φn(x),
with φn(x) being any of the orthogonal polynomials dealt
with in this paper andLz the differential operator such that
Lx{w(x)φn(x)} = 0. We give below the proof in the case of
Jacobi polynomial. This polynomial satisfies the differential
equation

(x2 − 1)
d2

dx2
Pαβ
n (x)

+[(α+ β + 2)x+ (α− β)]
d

dx
Pαβ
n (x)

−n(n+ α+ β + 1)Pαβ
n (x) = 0 . (45)

Knowing thatw(x) = (1 − x)α(1 + x)β , the operatorLz is
readily identified and the ADE (18) results. We then obtain
the bilinear concomitant explicitly,

P (z, x, v) = (1− x)1+α(1 + x)1+β

×

{
Pαβ
n (x)

(z − x)2
+
P ′αβ

n (x)

(z − x)

}
, (46)

by performing the partial integrations. Noting thatα, β > −1,
it clearly vanishes atx = ±1.

The above proof covers the cases of Legendre, Tchebyshev
and Gegenbauer polynomials. The proof goes almost the same
way for Hermite and Laguerre polynomials.

2. Analytical Continuation for Jacobi Polynomial
Knowing the differential equation for the polynomial, we

can readily derive the ADE. In the case of Jacobi, Eq. (18)
results. Taking again this case as a representative, we describe
in detail how the analytic continuatioñφn(ϵ± iδ) is obtained,
assuming that the two indicesα, β have non-integral values.

Equation (18) is canonical, with the three singularities at
z = ±1 andz = ∞. The Papperitz indices are readily iden-
tified. Using the Riemann symbol, the general solution is de-
noted as

P̃αβ
n (z) = P

 −1 +1 ∞
0 0 n+ 1 z
β α −(n+ α+ β)

 . (47)

Since we first wish to obtain the expression about the infinity,
we transform it into the reduced form, i.e. shift the singulari-
ties toz = 0, 1 and∞. This is done by changing the variable
z either to(1 + z)/2 or (1 − z)/2, and the Papperitz indices
remain unchanged by these transformations.

Using the former variable, we can immediately see that
the solution compatible with the asymptotic behaviour (14)
is given by

P̃αβ
n (z) ∝

(
1

1 + z

)n+1

×F (n+ 1, n+ β + 1|2n+ α+ β + 2| 2

1 + z
)

∼ 1/zn+1, (48)
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whereF is the hypergeometric function. The constant of the
proportionality in the first line must beK(n)

n in accordance
with Eq. (14). It is calculated from Eq. (13) as

K(n)
n =

2n+α+β+1Γ(α+ n+ 1)Γ(β + n+ 1)

Γ(α+ β + 2n+ 2)
. (49)

Representing the hypergeometric function as a series expan-
sion, the solution (48) is convergent only outside the left circle
of radius two, shown in Fig. 1, centered onz = −1. There-
fore it must be analytically continued into the circle (region
I). This is done by using the joining equation connecting the
two hypergeometric functions aroundz = ∞ andz = 0, with
the variablez being replaced by(1 + z)/2. In order to write
it in a form involving the trivial solutionw(z)φn(z), we fur-
ther make use of another joining equation referring to the two
singular points on the real axis. The result is

P̃αβ
n (z) =

π

sinπβ
· (1− z)α(−1− z)βPαβ

n (z)

+
(−1)n+12α+βΓ(n+ α+ 1)Γ(β)

Γ(n+ α+ β + 1)

×F (n+ 1,−α− β − n|1− β|1 + z

2
), (50)

where the first term comes from

Pαβ
n (z) =

Γ(n+ 1 + α)

n!Γ(1 + α)
F (−n, n+α+β+1|α+1|1− z

2
) ,

(51)
using the relationΓ(−t)Γ(t+ 1) = −π/sin πt.

In exactly the same manner, an alternative expression is
obtained by choosing(1− z)/2 as the variable:

P̃αβ
n (z) = − π

sinπα
· (−1 + z)α(1 + z)βPαβ

n (z)

+
2α+βΓ(n+ β + 1)Γ(α)

Γ(n+ α+ β + 1)

×F (n+ 1,−α− β − n|1− α|1− z

2
). (52)

This expression is valid in region II in Fig. 1. By using Kum-
mer’s relation, the two expressions are shown to be identi-
cal in the common convergence region (the hatched area in
Fig. 1). The analytic continuation is then carried on, down to
the real axis, to yield the two alternative expressions as shown
in Eqs. (19). They are identical as they should be, and this
gives the complete solution to the problem.

There is a subtle point in the above derivation about the
branch cut. The functionF (a, b|c|1/z) has a cut along the
real axis fromz = 0 to z = 1, so the joining equations must
be used for Eq. (48) taking this constraint into account. This
specifies the Riemann sheet to−π < arg(−z) ≤ +π, with
a cut betweenz = −1 andz = +1 as is shown in Fig. 1,
in either case of Eqs. (50) and (52). It prevents these two
functions to be multi-valued for the non-integral indices.

So far we have assumed the indicesα andβ to be both
non-integers. To be precise, Eq. (50) is valid only for a non-
integral value ofβ, whereas Eq. (52) for a non-integralα. Oth-
erwise the respective terms involve contributions that blow up,

so do the corresponding terms in Eqs. (19). This also applies
to the Legendre polynomial (α = β = 0), and we discuss this
case separately below. In fact this divergence is a spurious
one; they are shown to cancel each other. Anyhow it does not
bother us in the recursive algorithm described in Section II.3,
which covers all the cases on equal footings.

3. Analytical Continuation for Other Polynomials

(1) Legendre PolynomialPn(x)

Legendre polynomial belongs to the family of Jacobi, but
we can apply different joining equations in this particular case
to obtain

P̃n(z) =
(n!)2

(2n+ 1)!

2n+1

zn+1
F (
n+ 1

2
,
n+ 2

2
, n+

3

2
| 1

z2
)

≡ 2Qn(z), (53)

where the functionQn(z) is called the Legendre function of
the second kind. The terminology of the "second kind" often
refers only to the real part ofQn(ϵ±iδ). Denoting it byQn(ϵ),
we have a divergence-free expression

P̃n(ϵ± iδ) = 2Qn(ϵ)∓ iπPn(ϵ) , (54)

which coincides with the familiar definition

Qn(ϵ) =
1

2
P
∫ 1

−1

Pn(x)

ϵ− x
dx . (55)

(2) Tchebyshev and Gegenbauer PolynomialsTn(x), Cγ
n(x)

Jacobi polynomials with symmetric indices (α = β) are
usually distinguished by the name of Gegenbauer polynomial,
adopting a different normalization

Cγ
n(x) =

Γ(n+ 2γ)Γ(γ + 1/2)

Γ(2γ)Γ(n+ γ + 1/2)
P γ−1/2 γ−1/2
n (x) . (56)

This leads to a simpler recurrence relation, but the results are
basically the same as already given for Jacobi.

Exception is the case ofγ = 0, for which Cγ
n(x) is ill-

defined and an yet different normalization is to be adopted:

Tn(x) =
(2nn!)2

(2n)!
P−1/2 −1/2
n (x) . (57)

This is Tchebyshev polynomial, and the corresponding AF is

T̃n(ϵ± iδ) = −π(1− ϵ2)−1/2[Vn(ϵ)± iTn(ϵ)] , (58)

where

Vn(ϵ) =
2n−1n!

(2n− 1)!!
(1− x2)1/2P

1/2 1/2
n−1 (ϵ) (59)
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is the second kind solution of the Tchebyshev equation
(V0(ϵ) = 0 by definition). A remarkable feature of this poly-
nomial is the simplification of Eq. (58),

T̃n(ϵ± iδ) = ∓iπ(1− ϵ2)−1/2[ϵ∓ i(1− ϵ2)1/2]n

=
∓iπe∓inθ

sin θ
(ϵ = cosθ) , (60)

a property which has been extensively exploited in the KPM.3)

(3) Hermite PolynomialHn(x)

The definition interval of this polynomial is(−∞,∞), and
two different conventions are commonly used for the weight
function;w(x) = e−x2

or = e−x2/2. We adopt the former.
The corresponding ADE is

H̃ ′′
n(z) + 2zH̃ ′

n(z) + 2(n+ 1)H̃n(z) = 0. (61)

This is a differential equation without singularities. However
it can be transformed to the form of a confluent hypergeomet-
ric equation by settingζ = −z2,{

ζ
d2

dζ2
+ (1/2− ζ)

d

dζ
− n+ 1

2

}
H̃n = 0. (62)

The two independent solutions of the above equation are
F (n/2+1/2, 1/2|ζ) andzF (n/2+1, 3/2|ζ), whereF (a, c|ζ)
denotes the confluent hypergeometric function. Here again we
must take into account the asymptotic condition (14) for tak-
ing their linear combination. It is, however, less trivial in the
present case, because these two solutions are known to show
"Stokes’ phenomenon". That is, they have different asymp-
totic behaviours, depending on the directions pointing to the
infinity.14) The two linear combinations which suppress the
Stokes phenomenon are theconfluent hypergeometric func-
tions of the third kind,14)

U1

(
n+ 1

2
,
1

2
| ζ

)
∼ ζ−n/2e−ζ ,

U2

(
n+ 1

2
,
1

2
| ζ

)
∼ ζ−(n+1)/2ei

π
2 (n+1) . (63)

The second function meets the asymptotic condition (14).
In determining the proportionality constant, the phase of the
half-integral power must be chosen carefully, considering the
branch cut betweenζ = 0 andζ = −∞. We obtain

H̃n(z) = (−1)n+1n!π1/2U2

(
n+ 1

2
,
1

2
| ζ

)
. (64)

This expression is rewritten by a linear combination of the two
confluent hypergeometric functions. In doing so, it is to be re-
called that the variableζ crosses the cut ofU2 whenz crosses
the real axis. Therefore one must use different phase factors
for the respective terms on the second Riemann sheet. Ex-
plicit expressions for̃Hn(ϵ± iδ) are then obtained separately
for even and odd degrees:

H̃2n(ϵ± iδ) = ∓iπe−ϵ2H2n(ϵ)

+(−1)nπ1/222n+1n! ϵF (n+ 1, 3/2 | − ϵ2)

H̃2n+1(ϵ± iδ) = ∓iπe−ϵ2H2n+1(ϵ)

−(−1)nπ1/222n+1n! ϵF (n+ 1, 1/2 | − ϵ2).

(65)

Apart from the numerical factors, the real parts of Eqs. (65)
are identical to the Hermite functions of the second kind times
the weight function.

(4) Laguerre PolynomialLα
n(x)

This polynomial is defined in the interval of0 < x < ∞
with w(x) = xαe−x, α > −1. The ADE is given by

z
d2

dz2
L̃α
n(z) + [z + (1− α)]

d

dz
L̃α
n(z) + (n+ 1)L̃α

n(z) = 0,

(66)
and takes the form of confluent hypergeometric equation by
choosing−z as a variable. Taking again the functionU2 for
the solution and determining the constant by Eq. (14), we have

L̃α
n(z) = (−1)nΓ(n+ α+ 1)U2(n+ 1, 1− α | − z). (67)

The expression is valid for all values ofα > −1. Whenα is
not an integer, we obtain

L̃α
n(ϵ± iδ) = ( π cotπα∓ iπ )ϵαe−ϵLα

n(ϵ)

−Γ(α)F (n+ 1, 1− α | − ϵ). (68)

Whenα is an integer, we have the same divergence as we have
met in the case of Jacobi polynomial, which is again handled
properly in the recursive calculation.

B Table for the Recursive Calculation

For practical application of the RPE for the resolvent ex-
pansion, we only needs̃φ0(ϵ± iδ) and the coefficients for the
simultaneous recurrence formulae, particularlyA′

n, B′
n and

C ′
n in Eq. (29). We list them below for all the polynomials

studied in this paper. Other parameters are found in standard
textbooks. In this table it is understood thatC ′

0 = 0 for all
cases, and the indexα or β is assumed not to be an integer.
The results for the integral indices are given by Eqs. (23) and
(24). For using Hermite and Laguerre polynomials, it is rec-
ommended to normalize them to unity prior to regulation, in
order to reduce numerical overflow.

LegendrePn(x) : w(x) = 1

A′
n = 2n+ 1, B′

n = 0, C ′
n = 1

P̃0(ϵ± iδ) = ln

∣∣∣∣ϵ+ 1

ϵ− 1

∣∣∣∣ ∓ iπ
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TchebyshevTn(x) : w(x) = (1− x2)−1/2

A′
n = 2(n+ 1), B′

n = 0, C ′
n =

n+ 1

n− 1
(A′

0 = 1)

T̃0(ϵ± iδ) = ∓iπw(ϵ)

JacobiPαβ
n (x) : w(x) = (1− x)α(1 + x)β

A′
n =

(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ α+ β + 1)

B′
n = − (α− β)(2n+ α+ β + 1)

(n+ α+ β + 1)(2n+ α+ β)

C ′
n =

(n+ α)(n+ β)(2n+ α+ β + 2)

(n+ α+ β)(n+ α+ β + 1)(2n+ α+ β)

P̃αβ
0 (ϵ± iδ)

= w(ϵ)(−π cotπα ∓ i π )

+
2α+βΓ(α)Γ(β + 1)

Γ(α+ β + 1)
F (1,−α− β|1− α|1− ϵ

2
)

= w(ϵ)(π cotπβ ∓ i π )

−2α+βΓ(β)Γ(α+ 1)

Γ(α+ β + 1)
F (1,−α− β|1− β|1 + ϵ

2
)

Laguerre Lα
n(x) : w(x) = xαe−x

A′
n = −1, B′

n = 1, C ′
n = 0

L̃α
0 (ϵ± iδ) = w(ϵ)( π cotπα∓ iπ )

−Γ(α)F (1, 1− α | − ϵ)

Hermite Hn(x) : w(x) = e−x2

A′
n = 2(n+ 1), B′

n = 0, C ′
n = 0

H̃0(ϵ± iδ) = 2
√
πϵF (1, 3/2| − ϵ2)∓ iπw(ϵ)
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