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One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale 

problems while coping with less memory per compute node. In this work, we investigate a novel data decomposition 

method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per 

compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data 

as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. Initial re-

sults demonstrate that while the method does allow large problems to be run in a memory-limited environment, 

achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations. 
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I. Introduction
a
 

In recent years, there has been an increasing interest in 

using Monte Carlo methods to solve the neutron transport 

equation not only for validation purposes but also as a rou-

tine design tool. This shift has necessitated higher levels of 

complexity and detail in the geometric models being used 

and, consequently, higher demand on computing resources. 

At the same time, the advancement of high-performance 

technical computing has allowed researchers to begin study-

ing large-scale problems that would have previously been 

difficult, if not impossible, to solve using Monte Carlo me-

thods. 

Notwithstanding the benefits of the Monte Carlo method, 

the fact remains that simulations using Monte Carlo codes 

may take considerably longer to run than their deterministic 

counterparts, especially when determining local quantities 

such as reaction rates. As a result, Monte Carlo codes are 

routinely run in parallel on a workstation, cluster, or super-

computer. Monte Carlo simulations are inherently parallel 

since each stochastic realization of a neutron being tracked 

through phase space is completely independent of all other 

realizations. This is especially true for fixed source problems 

where no synchronization is necessary. For criticality prob-

lems, care must be taken to ensure that the source 

distribution and eigenvalue converge before tallying quanti-

ties of interest and to ensure reproducibility. Reference 1 

provides many details on the use of Monte Carlo methods 

for particle transport and on conventional techniques for 

parallel Monte Carlo calculations. 

However, the ability to run a Monte Carlo code in parallel 

depends not only on the nature of the simulation but also on 

the computer architecture it is being run on. In order for 
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most Monte Carlo codes to run in parallel, each process must 

have access to all the geometry and cross-section data. This 

means that the problem data are replicated and made availa-

ble to each processor, thus imposing a constraint on the 

amount of system memory required. For example, if the 

geometry and cross-section data consume 4 GB of memory 

and the user desires to run on 8 processors, the total memory 

requirement will be at least 32 GB. For high-fidelity prob-

lems such as a reactor full-core model with hundreds or 

thousands of depletion zones, it may not be possible to use 

all the processors on a single nodea if doing so would exceed 

the amount of memory available on that node. 

 

II. Methodology 

1. History and Motivation 

Over the course of the last 40 years, microprocessor ar-

chitecture and manufacturing processes have improved 

dramatically as evidenced by the persistent trend of increas-

ing transistor density, larger die sizes, and increasing 

processor clock frequency. The clock frequency is often used 

as a measure of the performance of a processor. Thus, the 

performance of processors has also improved over time due 

to higher clock frequencies which allow for more operations 

per second. 

However, in the last half-decade, we have seen only 

modest increases in clock frequencies. Nowadays, major 

improvements in performance are achieved by other means 

such as pipelining, instruction-level parallelism, multiple 

functional units, and most importantly multi-core and 

many-core processors. 

                                                                                                   
a By “node” here, we mean a typical symmetric multiprocessing 

(SMP) machine whereby multiple processors or cores are connected 

to a single shared memory. 
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The advent of multi-core chips has forced a paradigm 

shift in the programming world, with increased emphasis on 

threaded calculations (e.g., using OpenMP or pthreads) on a 

single SMP node, with message-passing (e.g., OpenMPI, 

MPICH2) between different nodes. Having a greater number 

of cores per processor will only benefit true performance if 

programmers take advantage of the parallelism inherent in 

the architecture. 

The above considerations lead one to conclude that in the 

near future, symmetric multiprocessing nodes will likely 

have hundreds of processor cores all sharing memory. The 

memory available on each node to be shared among cores 

will likely show only modest growth, leading to possibly less 

memory per core. In turn, the memory required by Monte 

Caro simulation will grow over time due to both the in-

creasing fidelity of problems being simulated as well as a 

higher number of processors on a single shared memory 

node. As a result, there will be a need for new methods that 

cope with limited memory in Monte Carlo (and other) simu-

lations. 

 

2. Data Decomposition 

In order to run a problem which would exceed the mem-

ory of a single node, the typical approach is to decompose 

the spatial domain and follow particles in a single domain on 

one compute node, moving particles between domains as 

needed. While this may work well for problems where the 

particle distribution is nearly uniform, non-uniformity may 

lead to poor load balancing, possibly even zero speedup due 

to idle processors and increasing communication. The inhe-

rent parallelism in Monte Carlo is over particles, not over 

spatial domains. 

In this paper, we look at an alternative scheme for paralle-

lization. In this scheme, the problem data are still spatially 

decomposed, but need not reside locally on the compute 

nodes. Rather than assigning particles to compute nodes 

based on their spatial coordinates, parallelism on particles is 

achieved by having each compute node retrieve geometry 

and cross-section data from other nodes only as needed. This 

approach is reminiscent of schemes used in the early days of 

computing, where much data was stored in extended memo-

ry devices (e.g., LCM, ECS, SSD) or disk storage and 

fetched into memory as needed. This approach ensures that 

each compute node follows the same number of particles and 

thus performs approximately the same amount of work. 

The mapping of the particle and data processes onto the 

computing nodes is very flexible in the proposed data de-

composition method. Since one-sided communication allows 

any one node to fetch data from another node as needed, the 

geometry and cross-section data can be stored anywhere in 

memory. The particle and data processes could thus be 

mapped to the same or different computing nodes. If needed, 

data nodes could be replicated to prevent contention between 

two nodes trying to access the same data. 

 

3. Network Communication 

The inherent limitation of the proposed method is greater 

communication as opposed to greater memory. Although 

message-passing would normally make such a scheme high-

ly inefficient, the introduction of remote data access features 

in MPI-2 (one-sided remote puts and gets) could make it an 

effective approach for solving problems too large to fit in the 

memory of a single node. It is instructive at this point to re-

view the basics of one- and two-sided communication. 

(1) Remote Memory Access 

The Message Passing Interface (MPI) has become the 

de-facto standard API for programming parallel computers. 

The MPI-1 standard2) was entirely based on what's known as 

“two-sided communication”. In this model, two processes 

can send data to one another, but in doing so, both processes 

must explicitly know that the communication is taking place. 

Thus, one process issues a command to send data from a 

buffer in its memory while the other process issues a com-

mand to receive data into a buffer in its memory. 

The MPI-2 standard3) introduced a set of features called 

one-sided communication. This mode of communication 

allows a process to remotely access the memory of another 

process without explicitly issuing a call to an MPI routine, 

hence the alternate name remote memory access (RMA). In 

order to do so, the originating process must specify all the 

communication parameters. The target process may not even 

know what buffer in memory was accessed or which remote 

process accessed its memory.  

There are three basic RMA communication calls: remote 

reads (MPI_GET), remote writes (MPI_PUT), and remote 

updates (MPI_ACCUMULATE). The operation performed 

during the remote update could be adding a value to a remote 

buffer, multiplying it by a value, or one of a number of other 

options. 

(2) Algorithm 

In the data decomposition algorithm, we subdivide the 

domain of the problem over a number of nodes as illustrated 

in Fig. 1. Each colored region corresponds to a subdomain 

that is stored on one node. When a particle hits the boundary 

of the subdomain, rather than moving the particle to another 

processor as in the domain decomposition method, the node 

remotely retrieves the geometry for the region which it is 

about to enter and accumulates any tallies for the previous 

region it was in. One also needs to accumulate tallies when-

ever a particle leaks out of the geometry or is absorbed by a 

material.  

While the basis of the method is simple enough, the devil 

is in the details. There are many variables at hand that make 

actually implementing this method in an efficient way a dif-

ficult problem. For instance, one should consider how large 

the subdomains should be, how each node will know where 

to retrieve data from and accumulate tallies to, when should 

problem data be replicated, etc. Rather than deal with all the 

complexities at hand immediately, in this paper we imple-

ment the method in a simple Monte Carlo code to gain some 

basic insights into the potential performance of this algo-

rithm. 

 

4. Performance of MPI Implementations 

Before we begin looking at the performance of the data 

decomposition method itself, it is instructive to first look at 
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the performance of the underlying remote memory access 

routines in various MPI implementations since the method 

relies heavily on RMA functionality. While there are many 

MPI implementations in existence, the two major imple-

mentations with large developer communities and active 

development are OpenMPI4) and MPICH2.5) Both of these 

implementations fully conform to the MPI-2 standard. 

To test the performance of one-sided communications, we 

looked at the average time it took to complete a remote read 

and a remote update for OpenMPI 1.4 and MPICH2-1.2.1. 

Figure 2 shows how the average time varies with the num-

ber of nodes simultaneously making calls to MPI_GET. We 

note that each process calling MPI_GET was remotely get-

ting data from a distinct node so that there should be no data 

contention. 

Figure 3 shows that remote updates perform similar to 

remote reads. It is clear from these figures that using 

OpenMPI in its current release will result in non-scalable 

code since the average time to perform an RMA operation 

increases with the number of nodes. Thus, we have elected 

to use MPICH2 for any testing and performance studies. 

 

III. Performance Studies 

1. Description of Simple Code 

As a first step, a simple Monte Carlo criticality code was 

written in Fortran 90 and parallelized using point-to-point 

and collective communications. The MPICH2 implementa-

tion was used to provide capabilities for message-passing 

and remote memory access. To make matters simple, only 

one energy group is used and scattering is assumed to be 

isotropic in the lab coordinate system. No variance reduction 

techniques are employed, so a particle's weight does not 

change throughout its history. 

The geometry is divided into a three-dimensional struc-

tured rectangular mesh, and each mesh cell is assigned a 

material number. The outer edges of the geometry can be 

assigned either vacuum or reflective boundary conditions. 

The method of successive generations is employed to 

converge on a stable fission source distribution and eigen-

value. 

(1)Retrieval of Problem Data 

In our implementation, regions are specified with a de-

rived data type named region. This data type has three 

attributes: the (x,y,z) coordinates of the lower-left corner of 

the region, the (x,y,z) coordinates of the upper-right corner of 

the region, and the material number assigned to the region. 

Thus, the entire geometry consists of one dynamically allo-

cated array of type region. 
The algorithm for dynamic retrieval of geometry data by 

the slave processes works as follows. At the beginning of a 

particle's life as well as each time a boundary is crossed, a 

call is made to a routine updateRegion provided the particle 

hasn't leaked out of the geometry or hit a reflective boundary 

condition. The updateRegion routine checks whether the 

particle has hit the edge of its local spatial domain, and if so, 

it makes a call to MPI_GET to fetch a new block of region 

data that includes the region it is about to enter. To facilitate 

this process, each particle is assigned two triplets (i,j,k), one 

indicating what global region the particle is currently in and 

one indicating what local region the particle is currently in. 

The accumulation of local tallies onto the data nodes is 

similar in principle to the retrieval of data. The size of the 

Fig. 1 Decomposition of geometry into several subdomains Fig. 2 Average time to perform MPI_GET for MPI implemen-

tations 

Fig. 3 Average time to perform MPI_ACCUMULATE for MPI 

implementations  
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tally arrays on the compute and data nodes is the same as the 

size of the geometry arrays. 

 

2. Worst-Case Scenario 

Let us now look at the performance of the simple scheme 

outlined above to see what improvements and refinements, if 

any, are necessary to make. We begin by looking at the 

worst-case scenario whereby there is no data decomposition 

and no data replication across nodes, i.e. all the problem data 

and tally structures sit on the master process. 

The worst-case scenario is represented by the diagram in 

Fig. 4. Here we see that the master process and the sole data 

node are one and the same. This will result in non-scalability 

for a number of reasons. Firstly, as the number of compute 

nodes increases, there will be increasing contention for re-

trieving data and accumulating tallies on the master process. 

Another possible source of contention will be simultaneous 

requests for work by one compute node and for data by 

another compute node. This source of contention would, in 

theory, be obviated if the network interconnect supports re-

mote direct memory access (RDMA) wherein the RMA 

operations do not interfere at all with computation. 

By having all the problem data on one node, we are guar-

anteed to have the maximum amount of contention for data 

since every compute node will query the master process for 

data whenever it needs to get a new geometry region or ac-

cumulate tallies.  

There are two manners in which we can test the perfor-

mance of this scheme. The first, and more common, method 

is to run the problem with varying number of processors for 

a fixed amount of work, e.g. 100,000 histories per cycle. 

This is known as strong scaling. The other method is to in-

crease the amount of work proportionally to the number of 

processors so that each processor has the same amount of 

work to perform regardless of how many processors are be-

ing run on. This ensures that the ratio between time spent in 

computation and time spent in communication should stay 

equal, and thus, the problem should scale. This is known as 

weak scaling. 

Based on the above considerations, it should be no sur-

prise that this scheme shows very poor performance with an 

increasing number of processors. Figure 5 shows the spee-

dup versus the number of compute nodes. Optimal 

performance is reached with only three compute nodes. Past 

this point, adding further compute nodes only slows down 

the overall run due to data contention at the master process. 

Each run consisted of 20 cycles with 10,000 histories per 

compute node per cycle (weak scaling). These runs were 

performed on the Kilkenny cluster at MIT, a commodity 

Linux cluster with a Gigabit Ethernet network interconnect. 

 

3. Best-Case Scenario 

The next scenario we look at is one in which each com-

pute node has a dedicated data node that has all the problem 

data fully replicated. In this scenario, there should be no data 

contention since no two compute nodes will be making re-

quests for data on the same data node. The diagram of this 

scenario shown in Fig. 6 illustrates that each compute node 

has its associated data node on the same physical node. This 

will minimize the communication latency since accessing 

memory on the same physical node should be faster than 

accessing memory on a different node. 
For the worst-case scenario, it was sufficient to see that 

even with weak scaling, the scheme was non-scalable. 

However, for the best-case scenario, it is instructive to look 

at both weak and strong scaling. Runs with up to 40 compute 

nodes and 40 data nodes were performed, again using the 

Kilkenny cluster. For the weak scaling cases, 10,000 histo-

ries per compute node were used. For the strong scaling 

cases, 400,000 total histories were used. 

With no contention for data on each of the data nodes, the 

speed-up becomes nearly linear. Figure 7 shows the speedup 

versus the number of compute nodes. 

We can see in Fig. 7 that weak scaling performs slightly 

better than strong scaling as one might expect from intuition. 

The results here are encouraging given that the runs were 

performed on commodity hardware. On a supercomputer 

with a fast network interconnect (e.g., InfiniBand), the re-

sults should be even better than shown here. 

 

4. Effect of Locality of Data on Communication Costs 

In our best-case scenario above, we conjectured that by 

Compute 

Node

Compute 

Node

Compute 

Node

Compute 

Node

Data 

Node

Master 

Process

Fig. 4 Physical depiction of worst-case scenario 

Fig. 5 Speed-up for worst-case scenario  
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having the data stored on the same physical node as the 

compute node, the communication latency would be mini-

mized. To actually quantify the effect of the locality of the 

data on the communication latency, two cases were run to 

see how performance fared when having all the data local to 

the compute nodes as well as the opposite. These cases are 

similar to our best-case scenario above in that each compute 

node has a dedicated data node. 
In the first case, illustrated in Fig. 8, each compute node 

has its corresponding data node on a different physical node. 

The second case, illustrated in Fig. 9, is the same as our 

best-case scenario above where each compute node has its 

corresponding data node on the same physical node. The 

first case will presumably be slower due to a higher commu-

nication latency associated with performing RMA operations 

on separate physical nodes. Each of these cases was run on 

16 processes, eight compute nodes and eight data nodes (in-

cluding the master process), for 20 cycles with 100,000 

histories per cycle. 

The first case with non-local data ran in 87.04 seconds 

whereas the second case with local data ran in 19.98 seconds. 

Thus, we see that performing RMA operations on non-local 

data incurs a factor of about four penalty in execution time 

versus performing RMA operations on local data due to the 

higher communication latency. This will have important 

implications when considering how best to decompose data 

over several nodes since it is desirable to have RMA opera-

tions performed on local nodes. 

 

5. Effect of Local Mesh Size on Communication Costs 

The size of the mesh data being remotely retrieved or ac-

cumulated may have a drastic effect on the communication 

cost. On one hand, having a larger local spatial domain will 

result in fewer RMA operations since a particle will cross 

the boundary of the local spatial domain with less frequency. 

On the other hand, a larger local spatial domain implies that 

the cost of performing a single RMA operation will be high-

er since there is more data to transfer. 
As a first step, we seek to quantify these two opposing 

effects by looking at how much data is transferred each cycle 

as the size of the local mesh. For this purpose, we looked at 

a 2D problem with 18×18 mesh cells. The local mesh size 

was varied from 1×1 up to 18×18 (all square meshes). This 

problem was run with 10,000 histories per cycle for 100 

cycles. The number of MPI_GET calls was tallied each cycle 

and then averaged over the cycles. In the 18×18 case, the 

entire geometry is available after a single MPI_GET, so the 

number of MPI_GET calls will simply be equal to the num-
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Fig. 6 Physical depiction of best-case scenario  

Fig. 7 Speed-up for best-case scenario  
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Fig. 9 Physical depiction of local data nodes  
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ber of histories per cycle. Figure 10 shows the number of 

MPI_GET calls per cycle as a function of the local mesh 

size. 

We see from  that using a local mesh size larger than 

about 4×4 for this particular problem yields a negligible de-

crease in the number of remote memory accesses. As the 

mesh size increases, the amount of data being transferred 

with each MPI_GET goes up quadratically (since it is a 2D 

problem). This will result in monotonically increasing data 

transfer with respect to the local mesh size.b Thus, for this 

problem, a small local mesh size (2×2 or 3×3) will result in 

optimal run times. We note that these results will be strongly 

dependent on the physical nature of the problem, i.e. whether 

it is strongly scattering or strongly absorbing. 

This simple characterization of the effect of the local 

mesh size on the communication cost is not sufficient to 

draw any major conclusions. We recommend that further 

studies be performed, particularly looking at how the physi-

cal nature of the problem affects data transfer requirements. 

In addition to this, another important line of inquiry will be 

to look at the time required for a single RMA operation as a 

function of the amount of data being transferred. 

 

IV. Conclusions 

Although this approach may end up being a suboptimal 

solution at the present time, given the aforementioned trends 

it will become increasingly viable in the near future. Pro-

posed architectures for exaflop systems postulate millions or 

100s of millions of processor cores, with reduced memory 

per core. Effective use of such systems for large-scale Monte 

Carlo calculations will require extremely large numbers of 

independent computational threads as well as the use of re-

mote data access. Advances in network interconnects have 

significantly improved the ability to transfer large amounts 

of data with low latency and high bandwidth (e.g. InfiniBand, 

10 Gigabit Ethernet), and these advances are likely to con-

tinue.  

Our work to date has focused on basic demonstration and 

characterization of algorithms based on a “particle paral-

lelism plus data decomposition” approach. We have 

investigated best- and worst-case bounds on performance, 

and are encouraged. Much future work is needed to investi-

gate such aspects as: the optimal mapping of compute nodes 

and data nodes to a given computer system architecture; the 

ability to dynamically monitor remote memory accesses and 

adjust the compute/data node mappings; prefetching of re-

mote data to minimize compute delays; performance scaling 

for 1000s and 100s of thousands of processor cores. In addi-

tion, some further changes in Monte Carlo algorithms may 

also be required, such as: the use of batch statistics, rather 

than history-based statistics; new iterative methods for keff 

eigenvalue calculations, such as concurrent calculation of 

multiple problems, each with particle parallelism and data 

decomposition; improved random number generators with 

longer periods and efficient skip-ahead schemes; increased 

use of on-the-fly computing methods rather than using pre-

computed data tables (e.g., for Doppler broadening of 

cross-section data). 
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Fig. 10 Remote memory accesses as a function of local mesh size  

b Note that although going from a 1×1 local mesh to a 2×2 local 

mesh yields a 22% decrease in the number of RMA operations, at 

the same time the amount of data being transferred with each 

RMA operation increases four-fold. 
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