
Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.670-675 (2011)

c© 2011 Atomic Energy Society of Japan, All Rights Reserved.

670

ARTICLE

Towards Scalable Parallelism in Monte Carlo Particle

Transport Codes Using Remote Memory Access

Paul K. ROMANO 1,*, Benoit FORGET 1 and Forrest BROWN 2

1 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2 Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545-1663, USA

One forthcoming challenge in the area of high-performance computing is having the ability to run large-scale

problems while coping with less memory per compute node. In this work, we investigate a novel data decomposition

method that would allow Monte Carlo transport calculations to be performed on systems with limited memory per

compute node. In this method, each compute node remotely retrieves a small set of geometry and cross-section data

as needed and remotely accumulates local tallies when crossing the boundary of the local spatial domain. Initial re-

sults demonstrate that while the method does allow large problems to be run in a memory-limited environment,

achieving scalability may be difficult due to inefficiencies in the current implementation of RMA operations.

KEYWORDS: Monte Carlo, neutron transport, parallelism, MPI-2, remote memory access, one-sided commu-

nication

I. Introduction
a

In recent years, there has been an increasing interest in

using Monte Carlo methods to solve the neutron transport

equation not only for validation purposes but also as a rou-

tine design tool. This shift has necessitated higher levels of

complexity and detail in the geometric models being used

and, consequently, higher demand on computing resources.

At the same time, the advancement of high-performance

technical computing has allowed researchers to begin study-

ing large-scale problems that would have previously been

difficult, if not impossible, to solve using Monte Carlo me-

thods.

Notwithstanding the benefits of the Monte Carlo method,

the fact remains that simulations using Monte Carlo codes

may take considerably longer to run than their deterministic

counterparts, especially when determining local quantities

such as reaction rates. As a result, Monte Carlo codes are

routinely run in parallel on a workstation, cluster, or super-

computer. Monte Carlo simulations are inherently parallel

since each stochastic realization of a neutron being tracked

through phase space is completely independent of all other

realizations. This is especially true for fixed source problems

where no synchronization is necessary. For criticality prob-

lems, care must be taken to ensure that the source

distribution and eigenvalue converge before tallying quanti-

ties of interest and to ensure reproducibility. Reference 1

provides many details on the use of Monte Carlo methods

for particle transport and on conventional techniques for

parallel Monte Carlo calculations.

However, the ability to run a Monte Carlo code in parallel

depends not only on the nature of the simulation but also on

the computer architecture it is being run on. In order for

*Corresponding author, E-mail: romano7@mit.edu

most Monte Carlo codes to run in parallel, each process must

have access to all the geometry and cross-section data. This

means that the problem data are replicated and made availa-

ble to each processor, thus imposing a constraint on the

amount of system memory required. For example, if the

geometry and cross-section data consume 4 GB of memory

and the user desires to run on 8 processors, the total memory

requirement will be at least 32 GB. For high-fidelity prob-

lems such as a reactor full-core model with hundreds or

thousands of depletion zones, it may not be possible to use

all the processors on a single nodea if doing so would exceed

the amount of memory available on that node.

II. Methodology

1. History and Motivation

Over the course of the last 40 years, microprocessor ar-

chitecture and manufacturing processes have improved

dramatically as evidenced by the persistent trend of increas-

ing transistor density, larger die sizes, and increasing

processor clock frequency. The clock frequency is often used

as a measure of the performance of a processor. Thus, the

performance of processors has also improved over time due

to higher clock frequencies which allow for more operations

per second.

However, in the last half-decade, we have seen only

modest increases in clock frequencies. Nowadays, major

improvements in performance are achieved by other means

such as pipelining, instruction-level parallelism, multiple

functional units, and most importantly multi-core and

many-core processors.

a By “node” here, we mean a typical symmetric multiprocessing

(SMP) machine whereby multiple processors or cores are connected

to a single shared memory.

Towards Scalable Parallelism in Monte Carlo Particle Transport Codes Using Remote Memory Access 671

VOL. 2, OCTOBER 2011

The advent of multi-core chips has forced a paradigm

shift in the programming world, with increased emphasis on

threaded calculations (e.g., using OpenMP or pthreads) on a

single SMP node, with message-passing (e.g., OpenMPI,

MPICH2) between different nodes. Having a greater number

of cores per processor will only benefit true performance if

programmers take advantage of the parallelism inherent in

the architecture.

The above considerations lead one to conclude that in the

near future, symmetric multiprocessing nodes will likely

have hundreds of processor cores all sharing memory. The

memory available on each node to be shared among cores

will likely show only modest growth, leading to possibly less

memory per core. In turn, the memory required by Monte

Caro simulation will grow over time due to both the in-

creasing fidelity of problems being simulated as well as a

higher number of processors on a single shared memory

node. As a result, there will be a need for new methods that

cope with limited memory in Monte Carlo (and other) simu-

lations.

2. Data Decomposition

In order to run a problem which would exceed the mem-

ory of a single node, the typical approach is to decompose

the spatial domain and follow particles in a single domain on

one compute node, moving particles between domains as

needed. While this may work well for problems where the

particle distribution is nearly uniform, non-uniformity may

lead to poor load balancing, possibly even zero speedup due

to idle processors and increasing communication. The inhe-

rent parallelism in Monte Carlo is over particles, not over

spatial domains.

In this paper, we look at an alternative scheme for paralle-

lization. In this scheme, the problem data are still spatially

decomposed, but need not reside locally on the compute

nodes. Rather than assigning particles to compute nodes

based on their spatial coordinates, parallelism on particles is

achieved by having each compute node retrieve geometry

and cross-section data from other nodes only as needed. This

approach is reminiscent of schemes used in the early days of

computing, where much data was stored in extended memo-

ry devices (e.g., LCM, ECS, SSD) or disk storage and

fetched into memory as needed. This approach ensures that

each compute node follows the same number of particles and

thus performs approximately the same amount of work.

The mapping of the particle and data processes onto the

computing nodes is very flexible in the proposed data de-

composition method. Since one-sided communication allows

any one node to fetch data from another node as needed, the

geometry and cross-section data can be stored anywhere in

memory. The particle and data processes could thus be

mapped to the same or different computing nodes. If needed,

data nodes could be replicated to prevent contention between

two nodes trying to access the same data.

3. Network Communication

The inherent limitation of the proposed method is greater

communication as opposed to greater memory. Although

message-passing would normally make such a scheme high-

ly inefficient, the introduction of remote data access features

in MPI-2 (one-sided remote puts and gets) could make it an

effective approach for solving problems too large to fit in the

memory of a single node. It is instructive at this point to re-

view the basics of one- and two-sided communication.

(1) Remote Memory Access

The Message Passing Interface (MPI) has become the

de-facto standard API for programming parallel computers.

The MPI-1 standard2) was entirely based on what's known as

“two-sided communication”. In this model, two processes

can send data to one another, but in doing so, both processes

must explicitly know that the communication is taking place.

Thus, one process issues a command to send data from a

buffer in its memory while the other process issues a com-

mand to receive data into a buffer in its memory.

The MPI-2 standard3) introduced a set of features called

one-sided communication. This mode of communication

allows a process to remotely access the memory of another

process without explicitly issuing a call to an MPI routine,

hence the alternate name remote memory access (RMA). In

order to do so, the originating process must specify all the

communication parameters. The target process may not even

know what buffer in memory was accessed or which remote

process accessed its memory.

There are three basic RMA communication calls: remote

reads (MPI_GET), remote writes (MPI_PUT), and remote

updates (MPI_ACCUMULATE). The operation performed

during the remote update could be adding a value to a remote

buffer, multiplying it by a value, or one of a number of other

options.

(2) Algorithm

In the data decomposition algorithm, we subdivide the

domain of the problem over a number of nodes as illustrated

in Fig. 1. Each colored region corresponds to a subdomain

that is stored on one node. When a particle hits the boundary

of the subdomain, rather than moving the particle to another

processor as in the domain decomposition method, the node

remotely retrieves the geometry for the region which it is

about to enter and accumulates any tallies for the previous

region it was in. One also needs to accumulate tallies when-

ever a particle leaks out of the geometry or is absorbed by a

material.

While the basis of the method is simple enough, the devil

is in the details. There are many variables at hand that make

actually implementing this method in an efficient way a dif-

ficult problem. For instance, one should consider how large

the subdomains should be, how each node will know where

to retrieve data from and accumulate tallies to, when should

problem data be replicated, etc. Rather than deal with all the

complexities at hand immediately, in this paper we imple-

ment the method in a simple Monte Carlo code to gain some

basic insights into the potential performance of this algo-

rithm.

4. Performance of MPI Implementations

Before we begin looking at the performance of the data

decomposition method itself, it is instructive to first look at

672 Paul K. ROMANO et al.

PROGRESS IN NUCLEAR SCIENCE AND TECHNOLOGY

the performance of the underlying remote memory access

routines in various MPI implementations since the method

relies heavily on RMA functionality. While there are many

MPI implementations in existence, the two major imple-

mentations with large developer communities and active

development are OpenMPI4) and MPICH2.5) Both of these

implementations fully conform to the MPI-2 standard.

To test the performance of one-sided communications, we

looked at the average time it took to complete a remote read

and a remote update for OpenMPI 1.4 and MPICH2-1.2.1.

Figure 2 shows how the average time varies with the num-

ber of nodes simultaneously making calls to MPI_GET. We

note that each process calling MPI_GET was remotely get-

ting data from a distinct node so that there should be no data

contention.

Figure 3 shows that remote updates perform similar to

remote reads. It is clear from these figures that using

OpenMPI in its current release will result in non-scalable

code since the average time to perform an RMA operation

increases with the number of nodes. Thus, we have elected

to use MPICH2 for any testing and performance studies.

III. Performance Studies

1. Description of Simple Code

As a first step, a simple Monte Carlo criticality code was

written in Fortran 90 and parallelized using point-to-point

and collective communications. The MPICH2 implementa-

tion was used to provide capabilities for message-passing

and remote memory access. To make matters simple, only

one energy group is used and scattering is assumed to be

isotropic in the lab coordinate system. No variance reduction

techniques are employed, so a particle's weight does not

change throughout its history.

The geometry is divided into a three-dimensional struc-

tured rectangular mesh, and each mesh cell is assigned a

material number. The outer edges of the geometry can be

assigned either vacuum or reflective boundary conditions.

The method of successive generations is employed to

converge on a stable fission source distribution and eigen-

value.

(1)Retrieval of Problem Data

In our implementation, regions are specified with a de-

rived data type named region. This data type has three

attributes: the (x,y,z) coordinates of the lower-left corner of

the region, the (x,y,z) coordinates of the upper-right corner of

the region, and the material number assigned to the region.

Thus, the entire geometry consists of one dynamically allo-

cated array of type region.
The algorithm for dynamic retrieval of geometry data by

the slave processes works as follows. At the beginning of a

particle's life as well as each time a boundary is crossed, a

call is made to a routine updateRegion provided the particle

hasn't leaked out of the geometry or hit a reflective boundary

condition. The updateRegion routine checks whether the

particle has hit the edge of its local spatial domain, and if so,

it makes a call to MPI_GET to fetch a new block of region

data that includes the region it is about to enter. To facilitate

this process, each particle is assigned two triplets (i,j,k), one

indicating what global region the particle is currently in and

one indicating what local region the particle is currently in.

The accumulation of local tallies onto the data nodes is

similar in principle to the retrieval of data. The size of the

Fig. 1 Decomposition of geometry into several subdomains Fig. 2 Average time to perform MPI_GET for MPI implemen-

tations

Fig. 3 Average time to perform MPI_ACCUMULATE for MPI

implementations

Towards Scalable Parallelism in Monte Carlo Particle Transport Codes Using Remote Memory Access 673

VOL. 2, OCTOBER 2011

tally arrays on the compute and data nodes is the same as the

size of the geometry arrays.

2. Worst-Case Scenario

Let us now look at the performance of the simple scheme

outlined above to see what improvements and refinements, if

any, are necessary to make. We begin by looking at the

worst-case scenario whereby there is no data decomposition

and no data replication across nodes, i.e. all the problem data

and tally structures sit on the master process.

The worst-case scenario is represented by the diagram in

Fig. 4. Here we see that the master process and the sole data

node are one and the same. This will result in non-scalability

for a number of reasons. Firstly, as the number of compute

nodes increases, there will be increasing contention for re-

trieving data and accumulating tallies on the master process.

Another possible source of contention will be simultaneous

requests for work by one compute node and for data by

another compute node. This source of contention would, in

theory, be obviated if the network interconnect supports re-

mote direct memory access (RDMA) wherein the RMA

operations do not interfere at all with computation.

By having all the problem data on one node, we are guar-

anteed to have the maximum amount of contention for data

since every compute node will query the master process for

data whenever it needs to get a new geometry region or ac-

cumulate tallies.

There are two manners in which we can test the perfor-

mance of this scheme. The first, and more common, method

is to run the problem with varying number of processors for

a fixed amount of work, e.g. 100,000 histories per cycle.

This is known as strong scaling. The other method is to in-

crease the amount of work proportionally to the number of

processors so that each processor has the same amount of

work to perform regardless of how many processors are be-

ing run on. This ensures that the ratio between time spent in

computation and time spent in communication should stay

equal, and thus, the problem should scale. This is known as

weak scaling.

Based on the above considerations, it should be no sur-

prise that this scheme shows very poor performance with an

increasing number of processors. Figure 5 shows the spee-

dup versus the number of compute nodes. Optimal

performance is reached with only three compute nodes. Past

this point, adding further compute nodes only slows down

the overall run due to data contention at the master process.

Each run consisted of 20 cycles with 10,000 histories per

compute node per cycle (weak scaling). These runs were

performed on the Kilkenny cluster at MIT, a commodity

Linux cluster with a Gigabit Ethernet network interconnect.

3. Best-Case Scenario

The next scenario we look at is one in which each com-

pute node has a dedicated data node that has all the problem

data fully replicated. In this scenario, there should be no data

contention since no two compute nodes will be making re-

quests for data on the same data node. The diagram of this

scenario shown in Fig. 6 illustrates that each compute node

has its associated data node on the same physical node. This

will minimize the communication latency since accessing

memory on the same physical node should be faster than

accessing memory on a different node.
For the worst-case scenario, it was sufficient to see that

even with weak scaling, the scheme was non-scalable.

However, for the best-case scenario, it is instructive to look

at both weak and strong scaling. Runs with up to 40 compute

nodes and 40 data nodes were performed, again using the

Kilkenny cluster. For the weak scaling cases, 10,000 histo-

ries per compute node were used. For the strong scaling

cases, 400,000 total histories were used.

With no contention for data on each of the data nodes, the

speed-up becomes nearly linear. Figure 7 shows the speedup

versus the number of compute nodes.

We can see in Fig. 7 that weak scaling performs slightly

better than strong scaling as one might expect from intuition.

The results here are encouraging given that the runs were

performed on commodity hardware. On a supercomputer

with a fast network interconnect (e.g., InfiniBand), the re-

sults should be even better than shown here.

4. Effect of Locality of Data on Communication Costs

In our best-case scenario above, we conjectured that by

Compute

Node

Compute

Node

Compute

Node

Compute

Node

Data

Node

Master

Process

Fig. 4 Physical depiction of worst-case scenario

Fig. 5 Speed-up for worst-case scenario

674 Paul K. ROMANO et al.

PROGRESS IN NUCLEAR SCIENCE AND TECHNOLOGY

having the data stored on the same physical node as the

compute node, the communication latency would be mini-

mized. To actually quantify the effect of the locality of the

data on the communication latency, two cases were run to

see how performance fared when having all the data local to

the compute nodes as well as the opposite. These cases are

similar to our best-case scenario above in that each compute

node has a dedicated data node.
In the first case, illustrated in Fig. 8, each compute node

has its corresponding data node on a different physical node.

The second case, illustrated in Fig. 9, is the same as our

best-case scenario above where each compute node has its

corresponding data node on the same physical node. The

first case will presumably be slower due to a higher commu-

nication latency associated with performing RMA operations

on separate physical nodes. Each of these cases was run on

16 processes, eight compute nodes and eight data nodes (in-

cluding the master process), for 20 cycles with 100,000

histories per cycle.

The first case with non-local data ran in 87.04 seconds

whereas the second case with local data ran in 19.98 seconds.

Thus, we see that performing RMA operations on non-local

data incurs a factor of about four penalty in execution time

versus performing RMA operations on local data due to the

higher communication latency. This will have important

implications when considering how best to decompose data

over several nodes since it is desirable to have RMA opera-

tions performed on local nodes.

5. Effect of Local Mesh Size on Communication Costs

The size of the mesh data being remotely retrieved or ac-

cumulated may have a drastic effect on the communication

cost. On one hand, having a larger local spatial domain will

result in fewer RMA operations since a particle will cross

the boundary of the local spatial domain with less frequency.

On the other hand, a larger local spatial domain implies that

the cost of performing a single RMA operation will be high-

er since there is more data to transfer.
As a first step, we seek to quantify these two opposing

effects by looking at how much data is transferred each cycle

as the size of the local mesh. For this purpose, we looked at

a 2D problem with 18×18 mesh cells. The local mesh size

was varied from 1×1 up to 18×18 (all square meshes). This

problem was run with 10,000 histories per cycle for 100

cycles. The number of MPI_GET calls was tallied each cycle

and then averaged over the cycles. In the 18×18 case, the

entire geometry is available after a single MPI_GET, so the

number of MPI_GET calls will simply be equal to the num-

Compute

Node

Compute

Node

Compute

Node

Compute

Node

Data

Node

Data

Node

Data

Node

Data

Node

Master

Process

Fig. 6 Physical depiction of best-case scenario

Fig. 7 Speed-up for best-case scenario

CN CN CN CN CN CN CN CN

DN DN DN DN DN DN DN DN

Master Process

Fig. 8 Physical depiction of non-local data nodes

CN

CN

CN

CN

CN

CN

CN

CNDN

DN DN

DN

DN

DN

DN

DN

Master Process

Fig. 9 Physical depiction of local data nodes

Towards Scalable Parallelism in Monte Carlo Particle Transport Codes Using Remote Memory Access 675

VOL. 2, OCTOBER 2011

ber of histories per cycle. Figure 10 shows the number of

MPI_GET calls per cycle as a function of the local mesh

size.

We see from that using a local mesh size larger than

about 4×4 for this particular problem yields a negligible de-

crease in the number of remote memory accesses. As the

mesh size increases, the amount of data being transferred

with each MPI_GET goes up quadratically (since it is a 2D

problem). This will result in monotonically increasing data

transfer with respect to the local mesh size.b Thus, for this

problem, a small local mesh size (2×2 or 3×3) will result in

optimal run times. We note that these results will be strongly

dependent on the physical nature of the problem, i.e. whether

it is strongly scattering or strongly absorbing.

This simple characterization of the effect of the local

mesh size on the communication cost is not sufficient to

draw any major conclusions. We recommend that further

studies be performed, particularly looking at how the physi-

cal nature of the problem affects data transfer requirements.

In addition to this, another important line of inquiry will be

to look at the time required for a single RMA operation as a

function of the amount of data being transferred.

IV. Conclusions

Although this approach may end up being a suboptimal

solution at the present time, given the aforementioned trends

it will become increasingly viable in the near future. Pro-

posed architectures for exaflop systems postulate millions or

100s of millions of processor cores, with reduced memory

per core. Effective use of such systems for large-scale Monte

Carlo calculations will require extremely large numbers of

independent computational threads as well as the use of re-

mote data access. Advances in network interconnects have

significantly improved the ability to transfer large amounts

of data with low latency and high bandwidth (e.g. InfiniBand,

10 Gigabit Ethernet), and these advances are likely to con-

tinue.

Our work to date has focused on basic demonstration and

characterization of algorithms based on a “particle paral-

lelism plus data decomposition” approach. We have

investigated best- and worst-case bounds on performance,

and are encouraged. Much future work is needed to investi-

gate such aspects as: the optimal mapping of compute nodes

and data nodes to a given computer system architecture; the

ability to dynamically monitor remote memory accesses and

adjust the compute/data node mappings; prefetching of re-

mote data to minimize compute delays; performance scaling

for 1000s and 100s of thousands of processor cores. In addi-

tion, some further changes in Monte Carlo algorithms may

also be required, such as: the use of batch statistics, rather

than history-based statistics; new iterative methods for keff

eigenvalue calculations, such as concurrent calculation of

multiple problems, each with particle parallelism and data

decomposition; improved random number generators with

longer periods and efficient skip-ahead schemes; increased

use of on-the-fly computing methods rather than using pre-

computed data tables (e.g., for Doppler broadening of

cross-section data).

Acknowledgment

This work was funded partly by the Los Alamos National

Laboratory and an NRC Graduate Education Fellowship.

References

1) Forrest B. Brown, “Fundamentals of Monte Carlo Particle

Transport”, LA-UR-05-4983, Los Alamos National Laboratory,

available at URL: http://mcnp.lanl.gov/publication/pdf/LA-UR

-05-4983_Monte_Carlo_Lectures.pdf (2005).

2) Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard Version 1.3, University of Tennessee,

Knoxville (2008).

3) Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard Version 2.1, University of Tennessee,

Knoxville (2008).

4) R. Graham, T. Woodal, J. Squyres, “Open MPI: A Flexible

High Performance MPI,” Proceedings of PPAM 2005, 228-239

(2005).

5) MPICH2 – A high-performance and highly portable imple-

mentation of the Message Passing Interface standard (both

MPI-1 and MPI-2), URL: http://www.mcs.anl.gov/research/

projects/mpich2

Fig. 10 Remote memory accesses as a function of local mesh size

b Note that although going from a 1×1 local mesh to a 2×2 local

mesh yields a 22% decrease in the number of RMA operations, at

the same time the amount of data being transferred with each

RMA operation increases four-fold.

	I. Introduction
	II. Methodology
	1. History and Motivation
	2. Data Decomposition
	3. Network Communication
	(1) Remote Memory Access
	(2) Algorithm

	4. Performance of MPI Implementations

	III. Performance Studies
	1. Description of Simple Code
	(1)Retrieval of Problem Data

	2. Worst-Case Scenario
	3. Best-Case Scenario
	4. Effect of Locality of Data on Communication Costs
	5. Effect of Local Mesh Size on Communication Costs

	IV. Conclusions
	Acknowledgment
	References

