
Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.663-669 (2011)

c© 2011 Atomic Energy Society of Japan, All Rights Reserved.

663

ARTICLE

On-the-Fly Computing on Many-Core Processors in Nuclear Applications

Noriyuki KUSHIDA∗

Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan

Many nuclear applications still require more computational power than the current computers can provide. Further-
more, some of them require dedicated machines, because they must run constantly or no delay is allowed. To satisfy
these requirements, we introduce computer accelerators which can provide higher computational power with lower
prices than the current commodity processors. However, the feasibility of accelerators had not well investigated on
nuclear applications. Thus, we applied the Cell and GPGPU to plasma stability monitoring and infrasound propagation
analysis, respectively. In the plasma monitoring, the eigenvalue solver was focused on. To obtain sufficient power, we
connected Cells with Ethernet, and implemented a preconditioned conjugate gradient method. Moreover, we applied
a hierarchical parallelization method to minimize communications among the Cells. Finally, we could solve the block
tri-diagonal Hermitian matrix that had1, 024 diagonal blocks, and each block was128 × 128, within one second. On
the basis of these results, we showed the potential of plasma monitoring by using our Cell cluster system. In infrasound
propagation analysis, we accelerated two-dimensional parabolic equation (PE) method by using GPGPU. PE is one
of the most accurate methods, but it requires higher computational power than other methods. By applying software-
pipelining and memory layout optimization, we obtained×18.3 speedup on GPU from CPU. Our achieved computing
speed could be comparable to faster but more inaccurate method.

KEYWORDS: PowerXCell 8i, HD5870, GPGPU, accelerators, plasma stability monitoring, infrasound prop-
agation analysis, preconditioned conjugate gradient method, finite difference method

I. Introduction

Many nuclear applications still need more computational
power. However, high performance computing (HPC) ma-
chines are said to be facing three walls today, and hit a glass
ceiling in speedup. They are the “Memory Wall,” the “Power
Wall,” and “Instruction-level parallelism (ILP) Wall.” Here,
the term “Memory Wall” is growing difference in speed be-
tween the processing unit and the main memory. “Power
Wall” is the increasing power consumption and resulting heat
generation of the processing unit, whereas “ILP Wall” is the
increasing difficulty of finding enough parallelism in an in-
struction. In order to overcome the memory wall problem,
out of order execution, speculative execution, data prefetch
mechanism and other techniques have been developed and
implemented. The common aspect of these techniques is
the minimizing of total processing time by operating possi-
ble calculations behind the data transfer. However, these tech-
niques cause so many extra calculations that the techniques
magnify the power wall problem. Here, the combined usage
of software controlled memory and single instruction multi-
ple data (SIMD) processing unit seems to be a good way to
break the memory wall and power wall.1) In particular, the
Cell processor2) and general-purpose computing on graphics
processing units (GPGPU),3) which are implemented on the
second and third fastest supercomputer in the world,4) per-
form well with HPC applications. Additionally, they are kinds

∗Corresponding author, E-mail: kushida.noriyuki@jaea.go.jp

of multicore processor and multicore processors have been
employed to attack the ILP wall. Consequently, we contend
that they include essentials of the future HPC processing unit.
In addition, Cell and GPGPU provide higher computational
power with cheaper price than current processors. This fea-
ture is suitable for nuclear applications that require dedicated
computer system, because they must run constantly, or no de-
lay is allowed. In this study, we apply Cell and GPGPU to
two nuclear applications, in order to investigate the feasibility
of accelerators on nuclear applications: one is plasma stability
monitoring, and the other is infrasound propagation analysis.
Both of them need dedicated HPC machines. Therefore, Cell
and GPGPU have preferable natures. The details including in-
dividual motivations of them are described in Sections II and
III, respectively. In Section IV, we made conclusions.

II. Plasma Stability Monitoring for Fusion Reactors

1. Motivations

In this study, we have developed a high speed eigenvalue
solver on a Cell cluster system, which is an essential compo-
nent of a plasma stability analysis system for fusion reactors.
The Japan Atomic Energy Agency (JAEA) has been devel-
oping a plasma stability analysis system, in order to achieve
sustainable operation. InFig. 1, we illustrate a schematic view
of the stability analysis module in the real time plasma profile
control system, which works as follows:

1. Monitor plasma current profile, pressure profile and the



664 Noriyuki KUSHIDA

PROGRESS IN NUCLEAR SCIENCE AND TECHNOLOGY

boundary condition of magnetic flux surface.

2. Calculate the plasma equilibrium using the equilibrium
code.

3. Evaluate the plasma stability for all possible modes
(Plasma is stable/unstable, when the smallest eigenvalue
λ, is grater/smaller than zero).

4. If the plasma is unstable, control the pressure/current
profiles to stabilize the plasma.

We need to evaluate the plasma equilibrium(2.) and sta-
bility of all possible modes(3.) every two to three seconds,
if the real time profile control is applied in the fusion reactors
such as International Thermo-nuclear Experimental Reactor
(ITER).5) The time limitation have roots in the characteris-
tic confinement time of the density and temperature in fusion
reactors; it is from three to five seconds. Moreover, we es-
timated that the plasma equilibrium and stability should be
evaluated within half of the characteristic confinement time,
by taking into account the time for data transfer, and other
such activities. Since we must analyze the plasma stability
within a quite short time interval, a high-speed computer is
essential. The main component of the stability analysis mod-
ule is the plasma simulation program MARG2D.6) MARG2D
consists of roughly two parts: one is the matrix generation
part, the other is the eigensolver. In particular, the eigen-
solver consumes the greatest amount of the computation time
of MARG2D. Therefore, we focused on the eigensolver in this
study. A massively parallel supercomputer (MPP), which ob-
tains its high calculation speed by connecting many process-
ing units and is the current trend for heavy duty computation,
is inadequate for following two reasons.

1. MPPs can not be dedicated for the monitoring system.

2. MPPs have a network communication overhead.

We elaborate on the above two points. Firstly, with regard
to the first point, when we consider developing the plasma
monitoring system, we are required to utilize a computer dur-
ing the entire reactor operation. That is because fusion reac-
tors must be monitored continuously on real time basis and
immediately. For this reason, MPPs are inadequate because
they are usually shared with a batch job system. Furthermore,
using an MPP is unrealistic, because of its high price. There-
fore, MPPs could not be dedicated to such a monitoring sys-
tem. Secondly, we discuss the latter point. MPPs consist of
many processing units that are connected via a network. The
data transfer performance of a network is lower than that of
main memory. In addition, there are several overheads that
are ascribable to introducing a network, such as the time to
synchronize processors, and the time to call communication
functions. These overheads are typically fromO(n) toO(n2),
where n is the number of processors. Even though the over-
heads can be substantial with a large number of processors,
they are usually negligible for large-scale computing, because
the net computational time is quite long. However, the moni-
toring system is required to terminate within such a short pe-
riod that network overheads can be dominant. Moreover, the

Fusion Reactor

Matrix generation

Eigensolver:
~1 sec.

Data receiver

Data sender Controller

C
ell cluster

C
ell cluster

C
ell cluster

λ > 0: stable
λ < 0: unstable

Result sender

Entire monitoring cycle: 2~3 sec.

Fig. 1 Illustration of plasma stability analysis module

entire time for computation can be longer when the number
of processors increases. Thus, we cannot utilize MPPs for
the monitoring system. In order to solve these problems men-
tioned above, we introduced a Cell cluster system into this
study. A cell processor is faster than a traditional processor,
hence we could obtain sufficient computational power with
a small number of processors. Thus, we were able to estab-
lish the Cell cluster system at much cheaper cost, and we can
dedicate it to monitoring. Moreover, our Cell cluster system
requires less network overhead. Therefore, it should be suit-
able for the monitoring system. The Cell processor obtains
its greater computational power at the cost of more complex
programming. Therefore, we also introduce our newly devel-
oped eigensolver in the present paper. The details of our Cell
cluster system and the eigenvalue solver, are described in the
following subsections (Subsections 2 and 3). Moreover, the
performance is evaluated in Subection 4 and conclusions are
given in Subection 5.

2. Cell Cluster

(1) PowerXCell 8i
PowerXCell 8i, which has a faster double precision com-

putational unit than the original version, is a kind of Cell pro-
cessor. An overview of PowerXCell 8i is shown inFig. 2.
In the figure, PPE denotes a Power PC Processor Element.
The PPE has a PPU that is a processing unit equivalent to a
Power PC, and also includes a second level cache memory.
SPE denotes a Synergetic Processor Element, which consists
of a 128 bit single instruction multiple data processing unit
(hereinafter referred to as SIMD), In earlier studies,7) the pro-
cessing unit was called an SPU, together with a local store
(LS) and a memory flow controller (MFC), which handles data
transfer between LS and main memory. The PPE, SPE, and
main memory are connected with an Element Interconnect
Bus (EIB). EIB has four buses and its total bandwidth reaches
204.8 Gigabytes per second. Note that the total bandwidth of
EIB includes not only the data transfer between the process-
ing unit and the main memory but also data transfer among
processing units. Therefore, we usually consider the practical



On-the-Fly Computing on Many-Core Processors in Nuclear Applications 665

VOL. 2, OCTOBER 2011

MICMIC

Flex
IO

Flex
IO

DDR2
Main memory

External 
device

PPE

SPESPE

MFC

SPU
LS

SPESPE

MFC

SPU
LS

SPESPE

MFC

SPU
LS

SPESPE

MFC

SPU
LS

SPESPE

MFC

SPU
LS

SPESPE

MFC

SPU
LS

SPESPE

MFC

SPU
LS

SPESPE

MFC

SPU
LS

L2 Cache

PPU
L1 Cache

Element  Interconnect  Bus

Fig. 2 Overview of PowerXCell 8i processor

bandwidth of PowerXCell 8i to be 25.6 Gigabytes per second,
which is the maximum access speed of main memory.
(2) Cell Cluster

For this study, we constructed a Cell cluster system using
QS228) blades, (developed by IBM), together with the Mpich2
library. QS22 contains two Cell processors and both can ac-
cess a common memory space; thus in total, sixteen SPEs
are available in one QS22 blade. In addition, two QS22s are
connected by a gigabit Ethernet. The Message passing inter-
face (MPI) specification is the standard for the communica-
tion interface for distributed memory parallel computing and
the Mpich2 library is one of the most well known implementa-
tions of MPI on commodity off the shelf clusters. Originally,
the MPI specification was developed for a computer system
with one processing unit and one main storage unit. This
model is simple but not suitable for a Cell processor, because
the SPUs have their own memory and therefore do not recog-
nize a change of data in main memory. Thus, we combined
two kinds of parallelization; the first is parallelization among
blades using Mpich2, and the second is parallelization among
SPUs. We observe, however, that a PPE only communicates to
other blades using Mpich2 and SPEs do not relate to commu-
nication. Moreover, the SIMD processing unit of SPE itself
is a kind of parallel processor. Then we must consider three
levels of parallelization, in order to obtain better performance
of the Cell cluster as follows:

1. MPI parallel

2. SPU parallel

3. SIMD parallel

3. Eigensolver
Although there are numerous eigenvalue solver algorithms,

only two are suitable for our purposes, because only the small-
est eigenvalue is required for our plasma stability analysis sys-
tem. One candidate is the Inverse power method, and the
other is the conjugate gradient method (hereafter referred to
as CG). The inverse power method is quite simple and easy
to implement; however, it requires solving the linear equation
at every iteration step, which is usually expensive in terms of
time and memory. It is fortunate that the computational cost
of lower/upper (LU) factorization and backward/forward (BF)
substitution of block tri-diagonal matrices is linear of order n.

However, this is just for the sequential case. We are forced
to incur additional computational cost with parallel comput-
ing, especially for MPI parallel. According to several articles,
the computational cost of LU factorization increases with a
small number of processors and is at least twice as great as
the sequential computational cost. In our estimation, such an
inflation of computational cost was not acceptable for our sys-
tem. On the other hand, CG is basically well suited to dis-
tributed parallel computing, in that the computational cost for
one processor linearly decreases as the number of processors
that are actually used, increases. For these reasons, we employ
CG as the eigenvalue solver. Details of the conjugate gradi-
ent method, including parallelization and the convergence ac-
celeration technique that we developed are described in the
following sections.

(1) Preconditioned Conjugate Gradient

CG is an optimization method used to minimize the value
of a function. If the function is given by

f (x) =
(x,Ax)
(x,x)

. (1)

The minimum value off (x) corresponds to the minimum
eigenvalue of the standard eigensystemAx = λx, and the
vectorx is an eigenvector associated with the minimum eigen-
value. Here( , ) denotes the inner product. The CG al-
gorithm, which was originally developed by Knyazev9) and
Yamada and others showed more concrete algorithm in their
literature,10) (as shown inFig. 3). In the Algorithm,T denotes
the preconditioning matrix. Several variants of the conjugate
gradient algorithm have been developed and have been tested
for stability. According to the literature, Knyazev’s algorithm
achieved quite good stability by employing Ritz method, ex-
pressed as the eigenproblem forSAv = µSBv, in the algo-
rithm. Yamada’s algorithm is equivalent to Knyazev’s algo-
rithm, however, it requires only one matrix-vector multiplica-
tion, which is one of the most time consuming steps of the al-
gorithm, whereas Knyazev’s original algorithm seems require
three such multiplications. Therefore, in the present study,
we employ Yamada’s algorithm. Let us consider the precon-
ditioning matrixT. The basic idea of preconditioning is to
transform the coefficient matrix close to the identity matrix by
operating by an inverse ofT that approximates the coefficient
matrix A in some sense. Even if a higher degree of approxi-
mation ofT to A provides a higher convergence rate for CG,
we usually stop short of achievingT = A, because the com-
putational effort can be extremely expensive. Additionally, an
inverse ofT is not constructed explicitly because the com-
putational effort can also be large. Although the matrixT−1

appears in the algorithms, the algorithm only requires solving
the linear equation. We usually employ triangular matrices, or
some multiples thereof, forT, because we can solve such a
system with Backward/Forward (BF) substitutions. It is fortu-
nate that complete LU factorization for block tri-diagonal ma-
trices can be obtained at reasonable computational cost; we
employed complete LU factorization to construct the precon-
ditioning matrixT.



666 Noriyuki KUSHIDA

PROGRESS IN NUCLEAR SCIENCE AND TECHNOLOGY

Fig. 3 Algorithm of conjugate gradient method introduced by
Yamadaet al.

(2) Parallelization of Conjugate Gradient Method

As is well known, network communication can be the bot-
tleneck in parallel computing. This is because, the band-
width of network is much narrower than that of main memory.
Therefore, we should avoid network communication as much
as possible, if we need to achieve high performance. In order
to reduce the amount of network communication, we employ
hierarchical parallelization technique. We illustrate the com-
parison of hierarchical and traditional parallelization inFig. 4.
For the simplicity, we assume that two Cells are connected
with Gigabit Ethernet. Note that SIMD parallelization does
not appear in the figure, because SIMD parallelization is op-
eration level parallelism and does not require communication.
At the upper part of the figure, traditional parallelization is il-
lustrated. In the traditional parallelization, each SPU commu-
nicates regardless of communication path. That is to say, they
use both Gigabit Ethernet (slow: red line in the figure) and
internal network (fast: blue line) at the same time, and con-
sequently effective bandwidth becomes slower. On the other
hand, SPU’s communication is strictly limited within Cell and
only PPU use Gigabit Ethernet in hierarchical parallelization.
By doing this, communication traffic can be reduced, and we
can highly utilize the internal network. SIMD parallelization
does not require communication, but is still parallel compu-
tation. It is arithmetic level parallel. Cell can compute two
double precision floating-point values (FP) at one clock-cycle,
while traditional processors compute one floating-point value.
Therefore, Cell can process FP twice as fast as traditional pro-
cessors.

Traditional：
SPUs communicate
regardless of 
communication path

CPU

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

Cell

Giga-bit ethernet(slow)

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

Cell

Internal network(fast)

Hierarchical:
Slower network is used 
only by CPU, and 
faster networks is 
highly utilized

CPU

CPU

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

Cell
SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU6
SPU7

Cell

CPU

Occurred communication

Fig. 4 Illustration of hierarchical parallelization with the
comparison traditional parallelization

4. Performance
In order to investigate the performance of our eigensolver,

we show the parallel performance with respect to the num-
ber of SPUs within one Cell processorFig. 5 and the num-
ber of QS22sFig. 6. Since the total number of SPUs in
one Cell processor is 16, we measured calculation time by
changing the number of SPUs from one to sixteen. These
measurements were curried out by using the block tridiago-
nal Hermitian matrix that had1, 024 diagonal blocks and each
block size was128 × 128. As shown in Fig.5, we can al-
ways achieve speedup when we use larger number of SPUs.
Finally, we obtained 8 times speedup at 16 SPUs. Further-
more, we can achieve speedup when we increase the number
of QS22s. Even though the connection among QS22s is Gi-
gabit Ethernet, we achieved good parallel performance (over
3times speedup at four QS22s). Therefore, it can be said that
our implementation is suitable for our Cell cluster.

5. Summary for Plasma Stability Monitoring
We developed a fast eigensolver on the Cell cluster. Ac-

cording to our evaluation, we were able to solve a block tri-
diagonal Hermitian matrix containing1, 024 diagonal blocks
with the relative error1.0×10−6, where the size of each block
was128× 128, within a second. This performance fulfills the
demand for monitoring.

III. Infrasound Monitoring

1. Motivations
Verification of the Comprehensive Nuclear-test-ban Treaty

(CTBT) requires the ability to detect, localize, and discrim-
inate nuclear events on a global scale.11) Monitoring and as-
sessing infrasound propagations are one of ways to achieve
the purpose. Many propagation analysis programs have been
developed for this purpose. One of these programs called In-
fraMAP. The main functionality of InfraMAP is simulating
the propagation paths of infrasound by using several simula-
tion programs. From this standpoint, InfraMAP equips three
simulation methods: Normal mode (NM), Ray-trace, (RT) and



On-the-Fly Computing on Many-Core Processors in Nuclear Applications 667

VOL. 2, OCTOBER 2011

0

2

4

6

8

10

12

14 Elaspsed Time Speed-up Ratio
Ela

pse
d T

im
e (

 se
c. 

)

Speed-up Ratio

Number of SPUs
1 2 4 8 16

16

8

1

Fig. 5 Parallel performance with respect to the number of
SPUs within one Cell

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1

2

3

4

1 2 3 4

Elapsed Time Speed-up Ratio

Ela
pse

d T
im

e (
 se

c. 
) Speed-up Ratio

Number of QS22s

Fig. 6 Parallel performance with respect to the number of
QS22s

Parabolic equation (PE) method. Each has its own advantages
and disadvantages. Among other things, PE is the strongest
method when we analyze detailed propagation path of infra-
sound. This is because PE method yields the solution to a
discretized version of the full acoustic wave equation for arbi-
trarily complex media.12) It is a full spectrum approach and is
thus reliable at all angles of propagation, including backscat-
ter. This offers an advantage over other standard propagation
methods in wide use, as it allows for accurate computation
of acoustic energy levels in the case where significant scat-
tering can occur near the source, such as may happen for an
explosion near the surface, or under ground. This fits in with
nuclear monitoring goals in that it allows for an improved un-
derstanding of the generation and propagation of infrasound
energy from underground and near-surface explosions. How-
ever, PE requires much higher computational power than oth-
ers do, while such analysis is curried out on a workstation.

Compute Unit 2

Proc. 
Elem. 16

Proc. 
Elem. 1

Local Data 
Storage (LS)

Compute Unit 1

Read/Write Memory Read Only Memory

Data
Cache

Proc. 
Elem. 16

Proc. 
Elem. 1

Local Data 
Storage (LS)

Compute Unit 20

Data
Cache

ATI Radeon 5870

Host Device (x86 PC)

Fig. 7 Configuration of HD5870

Therefore, we accelerate the PE method by using GPGPU,
which recently becomes famous its high computational speed
and low price. In this study, we aim to reduce the calcula-
tion time of PE to that of RT on CPU, in order to obtain more
accurate result than RT in the same calculation time of RT.
Typically, RT is ten times faster than PE, and therefore our
target performance is ten times better performance than one
CPU.13)

2. GPGPU -ATI Radeon HD5870-

We employed ATI Radeon HD5870 as an accelerator de-
vice. It is a kind of GPGPU. The configuration of HD5870 is
shown inFig. 7. HD5870 has 1 GByte memory that consists
of read/write area and read only area, and has 20 compute
units (CU). Each CU has 16 processor elements, 32 KByte
locate date storage (LS), and 16 KByte cache. A proces-
sor element includes five single precision arithmetic logic
units (ALU). The total performance reaches 2.7 TFLOPS. The
bandwidth of memory is 154 GByte/sec, and can be limit
the entire performance of scientific computing. In order to
fill the gap, CU has LS. LS is scratch pad memory and has
2 TByte/sec bandwidth. This situation is quite similar to the
Cell’s situation. Additionally, data cache that works only with
read only memory has 1 TByte/sec bandwidth, and it works
independently from LS.

3. Governing Equations and Discretization

In order to analyze the propagation path of infrasound on
inhomogeneous moving media, we employ Ostashevet al.’s
model.14) The resulted partial differential equations in two-
dimensional case are,

∂p

∂t
= −

(
vx

∂

∂x
+ vy

∂

∂y

)
− κ

(
∂wx

∂x
+

∂wy

∂y

)
+κQ, (2)



668 Noriyuki KUSHIDA

PROGRESS IN NUCLEAR SCIENCE AND TECHNOLOGY

∂wx

∂t
= −

(
wx

∂

∂x
+ wy

∂

∂y

)
vx −

(
vx

∂

∂x
+ vy

∂

∂y

)
wx

−b
∂p

∂x
+ bFx, (3)

∂wy

∂t
= −

(
wx

∂

∂x
+ wy

∂

∂y

)
vy −

(
vx

∂

∂x
+ vy

∂

∂y

)
wy

−b
∂p

∂y
+ bFy, (4)

where,p, wx, andwy , are the pressure and velocity of in-
frasound, andvx, and vy are the velocity of wind, respec-
tively. Further,b = 1/ρ whereρ is density of atmosphere,
and κ = ρc2, wherec is adiabatic sound speed.Fx, Fy,
andQ are the external sources of infrasound. These equations
are discretized by using finite difference method (FDM) with
staggered grid. Moreover, fourth order explicit Runge-Kutta
scheme is employed for time development.

4. Pipelining Method and Memory Configuration Opti-
mization
Because of the big gap between computational power and

memory bandwidth, we must utilize LS and data cache to
achieve high performance. In order to utilize LS, we employ
the software-pipelining method developed by Watanabeet
al.15) We show the memory layout and data flow of software-
pipelining method inFig. 8 . Each LS has only 32 KByte and
cannot store entire data, if all LS divide the entire domain.
Therefore, we assign small partition of analysis domain on
LS. If additional new data are needed, they are sent to LS but
old data are kept during they are useful. Thanks to the Watan-
abe’s method, we can reduce over 60% of memory access to
main memory. HD5870 has vector data type, which contains
four floating-point values in one variable. Since HD5870 is
optimized handling vector data, we can obtain better perfor-
mance by using it. In order to use the vector data type, we
pack several field data to a vector data. For example,p(i, j),
wx(i, j), andwy(i, j), are stored in the same variable, where
(i, j) denotes the grid point. Furthermore, we assign back-
ground data (vx, vy,ρ,c, andQ) on read only memory, in order
to utilize data cache and reduce the effective load of memory
bandwidth.

5. Performance Evaluation
In order to evaluate the performance of our implementa-

tion, we measured FLOPS and calculation time of HD5870
and CPU (Intel Xeon X5570 2.93 GHz). InTable 1, we tab-
ulate the GFLOPS and calculation time of each implementa-
tion. We prepared two sizes of FDM grids:nx = 1, 024,
ny = 1, 024, andnx = 2, 560, ny = 1, 024, wherenx,
andny are the number of grid points alongx andy axis, re-
spectively. In the table, CPU denotes CPU implementation,
Pipelining denotes Pipelining method on GPU, Vector data
denotes optimization by using vector data type for pipelin-
ing method, and Read only denotes that optimization by us-
ing read only memory data area for background variables on
Vector data. GFLOPS on CPU was obtained by using per-
formance counter. GFLOPS of GPU implementations were
calculated based on the result of CPU. When we see the re-

y

x

Entire Analysis Domain
: Data Newly loaded
: Data stored on LS
: Data dropped

LS1 LS2 LS20

Re
pe

at 
un

til 
y 

en
ds

Fig. 8 Memory layout and data flow of software-pipelining
method by Watanabeet al.

Table 1 GFLOPS and Calculation time of each implementa-
tion

1,024× 1,024 2,560× 1,024
GFLOPS TIME(sec) GFLOPS TIME(sec)

CPU 2.66E+00 15.77 2.09E+00 50.35
Pipelining 1.17E+01 3.59 2.93E+01 3.59

Vector data 1.37E+01 3.07 3.46E+01 3.05
Read only 1.53E+01 2.74 3.83E+01 2.75

sult of CPU, the more grid points we use, the worse GFLOPS
we obtained. This is because cache memory of CPU becomes
ineffective when the number of grid increases. On the other
hand, GPU implementations do not show the difference be-
tween two grids. The reason why we cannot observe the dif-
ference is that we could not utilize all of CU in smaller prob-
lem and the rest of them just slept during calculation. This
result would be observed untilnx reaches to2, 560. Accord-
ing to our estimation, all the CU can work only atnx = 2, 560
and shows the best performance on our implementation. Cal-
culation speed of GPU is originally better than that of CPU.
Additionally, when we applied optimization, we could accel-
erate1.5 times. Finally, we obtained×18.3 speed-up on GPU
than CPU in larger problem.

6. Summary for Infrasound Propagation Analysis

We implemented the simulation program of infrasound
propagation on both CPU and GPU. It was based on Osta-
shev’s model and was discretized by FDM. GPU implementa-
tion was optimized by using the pipelining method, the vector
data type, and the read only memory. Finally, we obtained
×18.3 speed-up from CPU, which was above our initial ob-
jective.



On-the-Fly Computing on Many-Core Processors in Nuclear Applications 669

VOL. 2, OCTOBER 2011

IV. Conclusion

In this study, we achieved speed-up in two nuclear applica-
tions by using computer accelerators. One is plasma stability
analysis on Cell cluster, and the other is infrasound propaga-
tion simulation on GPGPU. In plasma stability analysis, we
could solve a tri-diagonal Hermitian matrix within one sec-
ond, which contains1, 024 diagonal blocks where the size of
each block was128×128. On the other hand, infrasound prop-
agation simulation, we could achieve×18.3 speedup from
CPU in PE method by using GPGPU. PE has not been pre-
ferred because of its large computational requirements, so far.
However, time cost of PE and RT is almost same now. We
hope that our implementation brings result that is more accu-
rate than current result for CTBT.

Acknowledgment

We are grateful to JSPS for the Grant-in-Aid for Young Sci-
entists (B), No. 21760701. We also thank A. Tomita and K.
Fujibayashi FIXSTARS Co. for their extensive knowledge
of the CELL, and Dr. M. Segawa for her sound advice on
writing.

References

1) J. Gebis, L. Oliker, J. Shalf, S. Williams, K. Yelick, “Improving
Memory Subsystem Performance using ViVA: Virtual Vector
Architecture”,ARCS: International Conference on Architecture
of Computing Systems, Delft, Netherlands, March (2009).

2) International Business Machines Corporation, Sony Computer
Entertainment Incorporated, and Toshiba Corporation,Cell
Broadband Engine Architecture, Version 1.01(2006).

3) Advanced Mircro Technology,ATI Stream SDK OpenCL Pro-
gramming Guide(2010).

4) Top500 supercomputer sites, http://www.top500.org (2010).

5) ITER project web page, http://www.iter.org/default.aspx
(2010).

6) S. Tokuda, T. Watanabe, “A new eigenvalue problem associated
with the two-dimensional Newcomb equation without continu-
ous spectra,”Phys. Plasmas, 6[8], 3012–3026, (1999).

7) M. Scarpino, Programming the Cell procssor for Games,
Graphics, and Computation, Pearson Education (2009).

8) Prodcut information of QS22, available athttp://www-03.
ibm.com/systems/info/bladecenter/qs22/ .

9) A. V. Knyazev, “Toward the optimal eigensolver: Locally opti-
mal block preconditioned conjugate gradient method,”SIAM J.
Sci. Comput., 23, 517–541, (2001).

10) S. Yamada, T. Imamura, M. Machida, “Preconditioned Conju-
gate Gradient Method for Largescale Eigenvalue Problem of
Quantum Problem,”Trans. JSCES, No. 20060027 (2006), [In
Japanese].

11) R. Gibson, D. Norris, T. Farrell, “Development and Application
of an Integrated Infrasound Propagation Modeling Toll Kit,”
21st Seismic Research Symposium, 112–122 (1999).

12) C. Groot-Hedlin, “Finite Difference Modeling of Infrasound
Propagation to Local and Regional Distances,”29th Monitor-
ing Research Review: Ground-Based Nuclear Explosion Moni-
toring Technologies, 836–844 (2007).

13) P. Bernardi, M. Cavagnaro, P. D’Atanasio, E. Di Palma, S. Pisa,
E. Piuzzi, “FDTD, multiple-region/FDTD, ray-tracing/ FDTD:
acomparison on their applicability for human exposure evalua-
tion,” Int. J. Numer. Model, 15, 579–593 (2002).

14) V. E. Ostashevet al., “Equations for finite-difference, time-
domain simulation of sound propagation in moving inhomo-
geneous media and numerical implementation,”J. Acoust. Soc.
Am., 117[2], 503–517 (2005).

15) S. Watanabe, O. Hashimoto, “An Examination about Speed-
up of 3 Dimensional Finite Difference Time Domain (FDTD)
Method Using Cell Broadband Engine (Cell/B.E.) Processor,”
IEICE Technical Report, 109, 1–6 (2009), [In Japanese].


	I. Introduction
	II. Plasma Stability Monitoring for Fusion Reactors
	1. Motivations
	2. Cell Cluster
	(1) PowerXCell 8i
	(2) Cell Cluster

	3. Eigensolver
	(1) Preconditioned Conjugate Gradient
	(2) Parallelization of Conjugate Gradient Method

	4. Performance
	5. Summary for Plasma Stability Monitoring

	III. Infrasound Monitoring
	1. Motivations
	2. GPGPU -ATI Radeon HD5870-
	3. Governing Equations and Discretization
	4. Pipelining Method and Memory Configuration Optimization
	5. Performance Evaluation
	6. Summary for Infrasound Propagation Analysis

	IV. Conclusion
	Acknowledgment
	References

