
Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.639-642 (2011)

c© 2011 Atomic Energy Society of Japan, All Rights Reserved.

639

ARTICLE

Multiple-GPU Scalability of Phase-Field Simulation for Dendritic Solidification

Takayuki AOKI1,*, Satoi OGAWA1 and Akinori YAMANAKA2

1 Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
2 Graduate School of Science and Engineering, Tokyo Institute of Technology

Mechanical properties of metallic materials like steel depend on the solidification process. In order to study the
morphology of the microstructure in the materials, the phase-field model derived from the non-equilibrium statistical
physics is applied and the interface dynamics is solved by GPU computing. Since very high performance is required,
3-dimensional simulations have not been carried out so much on conventional supercomputers. By using 60 GPUs
installed on TSUBAME 1.2, a performance of 10 TFlops is archived for the dendritic solidification based on the
phase-field model.

KEYWORDS: GPGPU, phase-field model, dendritic solidification, CUDA, mupltiple GPU, TSUBAME 1.2,
Tesla C1060

I. Introduction1

The mechanical properties of metallic materials are
strongly characterized by distribution and morphology of the
microstructure in the materials. In order to improve the
mechanical performance of the materials and to develop a
new material, it is essential to understand the microstructure
evolution during solidification and phase transformation.
Recently, the phase-field model1) has been developed as a
powerful method to simulate the microstructure evolution. In
the phase-field modeling, the time-dependent
Ginzbunrg-Landau type equations which describe interface
dynamics and solute diffusion during the microstructure
evolution are solved by the finite difference and finite
element methods. This microstructure modeling has been
applied to numerical simulations for solidification, phase
transformation and precipitation in various materials.
However, large computational cost is required to perform
realistic and quantitative three-dimensional phase-field
simulation in the typical scales of the microstructure pattern.
To overcome such computational task, we utilize the
GPGPU (General-Purpose Graphics Processing Unit)2)

which is developed as an innovative accelerator3) in high
performance computing (HPC) technology．

GPU is a special processor often used in personal
computers (PC) to render the graphics on the display. The
request for high-quality computer graphics and PC games
led great progress on GPU’s performance and made it
possible to apply it to general-purpose computation． Since
it is quite different from the former accelerators due not only
to high performance of floating point calculation but also a
wide memory bandwidth, GPGPU is applicable to various
types of HPC applications. In 2006, CUDA3) framework was
released by NVIDIA and it has enabled us GPU

*Corresponding author, E-mail: taoki@gsic.titech.ac.jp

programming in standard C language without taking account
for graphics functions.

In this article, we study the growth of the dendritic
solidification of a pure metal in super cooling state by
solving the equations derived from the phase-field model.
Finite difference discretization is employed and the GPU
code developed in CUDA is executed on the GPU of
TSUBAME 1.2. The remarkably high performance is shown
in comparison with the conventional CPU computing.
Although most GPGPU applications run on single GPU, we
exploit a multiple GPU code and show the strong scalability
of large-scale problems.

II. Phase-Field Model

The phase-field model is a phenomenological
simulation method to describe the microstructure evolution
in sub-micron scale based on the diffuse-interface concept.
In this article, to describe the interface between solid phase
and liquid phase, we define a non-conserved order parameter
(phase field) φ taking a value of 0 in the liquid phase and 1
in the solid phase. In the interface region, φ gradually
changes from 0 to 1. The position at 5.0=φ can be defined
as the solid/liquid interface. Using this diffuse-interface
approach, the phase-field method does not require explicit
tracking of the moving interface.

In this study, a time-dependent Ginzbunrg-Landau
equation for the phase field φ and a heat conduction
equation are solved.4) The governing equations for the phase
field φ and the temperature T are given by the following
equations.

()

 χ+β+−φφ−φ+

φ∇

φ∂
ε∂

ε+
∂
φ∂

ε
∂
∂

+

φ∇

φ∂
ε∂

ε+
∂
φ∂

ε
∂
∂

+

φ∇

φ∂
ε∂

ε+
∂
φ∂

ε
∂
∂

=
∂
φ∂

aW
zz

yyxx
M

t

z

yx

2
11422

2222

(1)

640 Takayuki AOKI et al.

PROGRESS IN NUCLEAR SCIENCE AND TECHNOLOGY

()
tC

LT
t
T

∂
∂

−+∇=
∂
∂ φφφκ 222 130 (2)

Here, M is the mobility of the phase filed φ , ε is the
gradient coefficient, W is the potential height and β is the
driving force term. These parameters are related to the
material parameters as follows.

L
bTM m

δ
µ

3
= , (3)

δ
σbW 6

= , (4)

φ∇

φ+φ+φ
γ+γ−

δσ
=ε 4

4
,

4
,

4
,4313 zyx

b
, (5)

()φ−φ
−

−=β 1
2
15

m

m

T
TT

W
L . (6)

In this article, the material parameters for pure nickel are

used. The melting temperature mT = 1728 K, the kinetic
coefficient µ = 2.0 m/Ks, the interface thickness δ =
0.08 µm, the latent heat L = 2.35 × 109 J/m3 and the interfa-
cial energy σ = 0.37 J/m2, the heat conduction coefficient
κ = 1.55 × 10-5 m2/s and the specific heat C = 5.42 × 106
J/Km3. Furthermore, the strength of interfacial anisotropy γ
= 0.04. Assuming the interface region λ < φ < 1− λ, we ob-
tained ()λ21tanh 1 −= −b . λ is set to be 0.1, so that b reduce to
2.20. χ is a random number distributed uniformly in the in-
terval [−1, 1]. a is the amplitude of the fluctuation and set
to be 0.4.

III. GPU Computing

The calculations in this article were carried out on the
TSUBAME Grid Cluster 1.2 in the Global Scientific
Information and Computing Center (GSIC), at Tokyo
Institute of Technology. Each node consists of the Sun Fire
X4600 (AMD Opteron 2.4 GHz 16 cores, 32 GByte DDR2)
and is connected by two Infiniband SDR networks with
10 Gbps. Two GPUs of the NVIDIA Tesla S1070 (4 GPUs,
1.44GHz, VRAM 4GByte, 1036 GFlops, memory bandwidth
102 GByte/s) are attached to 340 nodes (total 680 GPUs)
through the PCI-Express bus (Generation 1.0 x8). In our
computations, one of the two GPUs is used per a node. The
Opteron CPU (2.4 GHz) on each node has the performance
of 4.8 GFlops and a memory bandwidth of 6.4 GByte/sec
(DDR-400). CUDA version 2.2 and NVIDIA Kernel Module
185.18.14 are installed and the OS is SUSE Enterprise Linux
10.

1. Tuning Techniques

Equations (1) and (2) are discretized by the second-order
Finite Difference Method and time-integrated with the
first-order accuracy (Euler scheme).The arrays for the
dependent variables φ at the n and n+1 time steps are
allocated on the VRAM, called the global memory in CUDA.
We minimize the data transfer between the host (CPU)
memory and the device memory (global memory) through

the narrow PCI-Express bus, which becomes a large
overhead of the GPU computing.

In CUDA programming, the computational domain of a
nx×ny×nz mesh is divided into L×M×M smaller domains of a
MX×MY×MZ mesh, where MX = nx/L, MY = ny/M, MZ =
nz/N. We assign the CUDA threads (MX, MY, 1) to each
small domain in the x- and y-directions. Each thread
computes MZ grid points in the z-direction using a loop. The
GPU performance strongly depends on the block size and we
optimize it to be MX = 64 and MY = 4.

The discretized equation for the phase field variable φ is
reduced to the stencil calculation referring to 18 neighbor
mesh points. In order to suppress the global memory access,
we use the shared memory as a software managed cache.
Recycling three arrays with a size of (MX + 2)×(MY + 2)
saves the use of the shared memory. In computing the
temperature, the shared memory is used similarly, however
in this case the time derivative term n

kji
t

,,
∂φ∂ appears in

the right-hand side of Eq.(2). We fuse the computational
kernel function of 1

,,,,
+φ→φ n

kji
n

kji with the kernel function of
1
,,,,
+→ n

kji
n

kji TT , so that it becomes unnecessary to access the
global memory by keeping the value n

kji
t

,,
∂φ∂ on a temporal

variable in the kernel function.

2. Performance of Single GPU

In order to evaluate the performance of the GPU
computing and check the numerical results in comparison
with CPU, we also built the CPU code simultaneously. Since
integer calculations are also done by streaming processors of
GPU, we count the number of floating point operation of the
calculation for the dendrite solidification by using the
hardware counter of the PAPI (Performance API)5) for the
CPU code.

The maximum mesh size of the run is 640×640×640 on
single GPU, because one GPU board of Tesla S1070 has
4 GByte VRAM (GDDR3). By changing the mesh size, we
measured the performance of the GPU computing and we

Fig. 1 Snap shots of the dendritic solidification growth

Multiple-GPU Scalability of Phase-Field Simulation for Dendritic Solidification 641

VOL. 2, OCTOBER 2011

Number of GPU/CPUs

Pe
rf

or
m

an
ce

[T
FL

O
PS

]

CPU
GPU

10

0.1

0.001 10 1001

1

0.01

50001000

had 116.8 GFlops for 64×64×64 mesh, 161.6 GFlops for
128×128×128 mesh, 169.8 GFlops for 256×256×256 mesh,
168.5 GFlops for 512×512×512 mesh and 171.4 GFlops
640×640×640 mesh. The performance of the single CPU
core (Opteron 2.4 GHz) is 898 MFlops, and it was found to
be a 190x-speedup on TSUBAME1.2.

The phase-field calculation consists of 373 floating point
operations and 28 times global memory access (26 reads and
2 writes) per one mesh point. The same calculation is carried
out on every mesh point in single precision. The arithmetic
intensity is estimated to be 3.33 Flop/Byte. In the case when
using the shared memory, the number of memory read
reduces to 2 and the arithmetic intensity increases up to
23.31 Flop/Byte. It is understood that the calculation is much
more compute-intensive than Computational Fluid
Dynamics standards. Therefore, such high performances as
171.4 GFlops can be achieved in the GPU computing.
Figure 1 shows the snap shots of the dendritic solidification
growth.

IV. Multiple-GPU Computing
1. GPU Computing on Multi-Node

Multiple GPU computing is carried out for the following
two purposes: (1) enabling large-scale computing beyond the
memory limitation on a single GPU card and (2) speedup the
fixed problem pursuing strong scalability. Multiple GPU
computing requires GPU-level parallelization constructing a
hierarchical parallel computing, since the blocks and the
threads in CUDA have already been parallelized inside the
GPU. The computational domain is decomposed and a
sub-domain is assigned to each GPU.

Using the MPI library for the communication between
GPU nodes, we run the same process number as the GPU
number. Direct data transfer of GPU-to-GPU is not available
and a three-hop communication is required: global memory
to host memory, MPI communication, host memory to the
global memory. This communication overhead of the
multi-GPU computing is relatively much larger than that of

CPU. In this article a 1-dimensional domain decomposition
is examined for simplicity.

2. Overlap between Communication and Computation

In order to improve the performance of the multiple-GPU
computing, an overlapping technique between
communication and computation is introduced. Since
Eqs. (1) and (2) are explicitly time-integrated, only the data
of one mesh layer at the sub-domain boundary is transferred.
The GPU kernel is divided into two and the first kernel
computes the boundary mesh points. At this moment, the
data is ready to be transferred and the CUDA memory copy
API from the global memory to host memory starts
asynchronously as the stream 0. Simultaneously the second
kernel that computes the inner mesh points starts as the
stream 1. The overlapping of stream 0 with the stream 1 can
hide the communication time.

3. Performance of Multiple GPU Computing

In the four cases: 512×512×512 mesh, 960×960×960
mesh, 1920×1920×1920 mesh and 2400×2400×2400 mesh,
their performances are examined with changing the number
of GPUs for both the overlapping and the non-overlapping
cases. The strong scalabilities are shown in Fig.2. All the
cases were done by using one of two GPUs per a node
combined and connected by single interface card, since we
want to maintain the GPU-to-GPU communication
bandwidth as much as possible.

In every case, the performance of the overlapping
computation is greatly improved compared with that of the
non-overlapping. The ideal strong scalabilities are achieved
up to 8 GPUs for 512×512×512 mesh, from 4 to 24 GPUs
for 960×960×960 mesh, from 30 to 48 GPUs for
1920×1920×1920 mesh. We have a perfect weak scalability
in the extent of the GPU number used in our runs.

In the overlapping cases, the ideal strong scalabilities are
suddenly saturated by increasing the GPU number. In
one-dimensional domain decomposition, the communication
time does not depend on the GPU number. On the other hand,

Number of GPUs

Pe
rf

or
m

an
ce

[T
FL

O
PS

]

512x512x512 [No Overlapping]
512x512x512 [Overlapping]
960x960x960 [No Overlapping]
960x960x960 [Overlapping]
1920x1920x1920 [No Overlapping]
1920x1920x1920 [Overlapping]
2400x2400x2400 [No Overlapping]
2400x2400x2400 [Overlapping]

10

1

0.1 10 1001

5

0.5

5 50 200

Fig. 2 Strong Scalabilities of multi-GPU computing
Fig. 3 Performance Comparison between GPU and CPU on

TSUBAME 1.2 for the case of 960×960×960 mesh

642 Takayuki AOKI et al.

PROGRESS IN NUCLEAR SCIENCE AND TECHNOLOGY

the domain size decreases with increasing the GPU number.
For instance, runs of 512×512×512 have the longer
computational time than the communication with less than 32
GPUs, however the computational time becomes shorter
than the communication for greater than 32 GPUs. It is not
possible to hide the communication time any more.

It should be highlighted that the performance of a
10 TFlops is achieved with 60 GPUs, which is comparable
performance of the application running on world top-class
supercomputers. It took about 1 hour of the elapsed time to
achieve the full growth in the domain as shown in the last
snap of Fig. 1. We directly compare the GPU performance
with the CPU on TSUBAME 1.2 for the same test case of
960×960×960 mesh. The CPU code is not tuned by using
SSE and only the optimization option of the compiler is
applied. In the overlapping case, 24 GPUs show the
performance of 3.7 TFlops in Fig. 3, and it is noticed that 24
GPUs are comparable with 4000 Opteron (2.4 GHz) CPU
cores, even if we assume the perfect strong scalability.

V. Conclusion

The GPU computing for the dendritic solidification
process of a pure metal was carried out on the NVIDIA
Tesla S1070 GPUs of TSUBAME 1.2 by solving a
time-dependent Ginzbunrg-Landau equation coupling with
the thermal conduction equation based on the phase-field
model. The GPU code was developed in CUDA and a
performance of 171 GFlops was achieved on a single GPU.
It is found that the multiple-GPU computing with domain
decomposition has a large communication overhead. Both
the strong and the weak scalabilities were shown. A
performance of 10 TFlops was achieved with 60 GPUs,

when the overlapping technique was introduced. The GPU
computing greatly contributes to low electric-power
consumption and is a promising candidate for the
next-generation supercomputing.

Acknowledgment

This research was supported in part by KAKENHI,
Grant-in-Aid for Scientific Research(B) 19360043 from The
Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT), JST-CREST project ”ULP-HPC: Ultra
Low-Power, High Performance Computing via Modeling
and Optimization of Next Generation HPC Technologies”
from Japan Science and Technology Agency(JST) and JSPS
Global COE program “Computationism as a Foundation for
the Sciences” from Japan Society for the Promotion of
Science(JSPS).

References
1) T. Takaki, T. Fukuoka, Y. Tomita, “Phase-field simulation

during directional solidification of a binary alloy using adaptive
finite element method,” J. Crystal Growth., 283, 263-278
(2005).

2) T. Endo, S. Matsuoka, “Massive Supercomputing Coping with
Heterogeneity of Modern Accelerators,” IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2008),
(2008).

3) NVIDIA Corporation, NVIDIA CUDA Compute Unified Device
Architecture Programming Guide Version 2.0, NVIDIA
Corporation, California, (2008).

4) R. Kobayashi, “Modeling and numerical simulations of
dendritic crystal growth,” Physica, D63[3-4], 410-423 (1993).

5) PAPI, http://icl.cs.utk.edu/papi/

	I. Introduction
	II. Phase-Field Model
	III. GPU Computing
	1. Tuning Techniques
	2. Performance of Single GPU

	IV. Multiple-GPU Computing
	1. GPU Computing on Multi-Node
	2. Overlap between Communication and Computation
	3. Performance of Multiple GPU Computing

	V. Conclusion
	Acknowledgment
	References

