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Mechanical properties of metallic materials like steel depend on the solidification process. In order to study the 
morphology of the microstructure in the materials, the phase-field model derived from the non-equilibrium statistical 
physics is applied and the interface dynamics is solved by GPU computing. Since very high performance is required, 
3-dimensional simulations have not been carried out so much on conventional supercomputers. By using 60 GPUs 
installed on TSUBAME 1.2, a performance of 10 TFlops is archived for the dendritic solidification based on the 
phase-field model. 
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I. Introduction1

The mechanical properties of metallic materials are 
strongly characterized by distribution and morphology of the 
microstructure in the materials. In order to improve the 
mechanical performance of the materials and to develop a 
new material, it is essential to understand the microstructure 
evolution during solidification and phase transformation. 
Recently, the phase-field model1) has been developed as a 
powerful method to simulate the microstructure evolution. In 
the phase-field modeling, the time-dependent 
Ginzbunrg-Landau type equations which describe interface 
dynamics and solute diffusion during the microstructure 
evolution are solved by the finite difference and finite 
element methods. This microstructure modeling has been 
applied to numerical simulations for solidification, phase 
transformation and precipitation in various materials. 
However, large computational cost is required to perform 
realistic and quantitative three-dimensional phase-field 
simulation in the typical scales of the microstructure pattern. 
To overcome such computational task, we utilize the 
GPGPU (General-Purpose Graphics Processing Unit)2) 

which is developed as an innovative accelerator3) in high 
performance computing (HPC) technology． 

 

GPU is a special processor often used in personal 
computers (PC) to render the graphics on the display. The 
request for high-quality computer graphics and PC games 
led great progress on GPU’s performance and made it 
possible to apply it to general-purpose computation． Since 
it is quite different from the former accelerators due not only 
to high performance of floating point calculation but also a 
wide memory bandwidth, GPGPU is applicable to various 
types of HPC applications. In 2006, CUDA3) framework was 
released by NVIDIA and it has enabled us GPU 
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programming in standard C language without taking account 
for graphics functions. 

In this article, we study the growth of the dendritic 
solidification of a pure metal in super cooling state by 
solving the equations derived from the phase-field model. 
Finite difference discretization is employed and the GPU 
code developed in CUDA is executed on the GPU of 
TSUBAME 1.2. The remarkably high performance is shown 
in comparison with the conventional CPU computing. 
Although most GPGPU applications run on single GPU, we 
exploit a multiple GPU code and show the strong scalability 
of large-scale problems. 

 
II. Phase-Field Model 

The phase-field model is a phenomenological 
simulation method to describe the microstructure evolution 
in sub-micron scale based on the diffuse-interface concept. 
In this article, to describe the interface between solid phase 
and liquid phase, we define a non-conserved order parameter 
(phase field) φ  taking a value of 0 in the liquid phase and 1 
in the solid phase. In the interface region, φ  gradually 
changes from 0 to 1. The position at 5.0=φ  can be defined 
as the solid/liquid interface. Using this diffuse-interface 
approach, the phase-field method does not require explicit 
tracking of the moving interface. 

In this study, a time-dependent Ginzbunrg-Landau 
equation for the phase field φ  and a heat conduction 
equation are solved.4) The governing equations for the phase 
field φ  and the temperature T are given by the following 
equations. 
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Here, M is the mobility of the phase filed φ , ε  is the 
gradient coefficient, W is the potential height and β  is the 
driving force term. These parameters are related to the 
material parameters as follows. 
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In this article, the material parameters for pure nickel are 

used. The melting temperature mT  = 1728 K, the kinetic 
coefficient µ  = 2.0 m/Ks, the interface thickness δ  = 
0.08 µm, the latent heat L  = 2.35 × 109 J/m3 and the interfa-
cial energy σ  = 0.37 J/m2, the heat conduction coefficient 
κ = 1.55 × 10-5 m2/s and the specific heat C = 5.42 × 106 
J/Km3. Furthermore, the strength of interfacial anisotropy γ  
= 0.04. Assuming the interface region λ < φ < 1− λ, we ob-
tained ( )λ21tanh 1 −= −b . λ is set to be 0.1, so that b reduce to 
2.20. χ is a random number distributed uniformly in the in-
terval [−1, 1]. a  is the amplitude of the fluctuation and set 
to be 0.4.  
 
III. GPU Computing 

The calculations in this article were carried out on the 
TSUBAME Grid Cluster 1.2 in the Global Scientific 
Information and Computing Center (GSIC), at Tokyo 
Institute of Technology. Each node consists of the Sun Fire 
X4600 (AMD Opteron 2.4 GHz 16 cores, 32 GByte DDR2) 
and is connected by two Infiniband SDR networks with 
10 Gbps. Two GPUs of the NVIDIA Tesla S1070 (4 GPUs, 
1.44GHz, VRAM 4GByte, 1036 GFlops, memory bandwidth 
102 GByte/s) are attached to 340 nodes (total 680 GPUs) 
through the PCI-Express bus (Generation 1.0 x8). In our 
computations, one of the two GPUs is used per a node. The 
Opteron CPU (2.4 GHz) on each node has the performance 
of 4.8 GFlops and a memory bandwidth of 6.4 GByte/sec 
(DDR-400). CUDA version 2.2 and NVIDIA Kernel Module 
185.18.14 are installed and the OS is SUSE Enterprise Linux 
10. 
 
1. Tuning Techniques 

Equations (1) and (2) are discretized by the second-order 
Finite Difference Method and time-integrated with the 
first-order accuracy (Euler scheme).The arrays for the 
dependent variables φ at the n and n+1 time steps are 
allocated on the VRAM, called the global memory in CUDA. 
We minimize the data transfer between the host (CPU) 
memory and the device memory (global memory) through 

the narrow PCI-Express bus, which becomes a large 
overhead of the GPU computing. 

In CUDA programming, the computational domain of a 
nx×ny×nz mesh is divided into L×M×M smaller domains of a 
MX×MY×MZ mesh, where MX = nx/L, MY = ny/M, MZ = 
nz/N. We assign the CUDA threads (MX, MY, 1) to each 
small domain in the x- and y-directions. Each thread 
computes MZ grid points in the z-direction using a loop. The 
GPU performance strongly depends on the block size and we 
optimize it to be MX = 64 and MY = 4. 

The discretized equation for the phase field variable φ  is 
reduced to the stencil calculation referring to 18 neighbor 
mesh points. In order to suppress the global memory access, 
we use the shared memory as a software managed cache. 
Recycling three arrays with a size of (MX + 2)×(MY + 2) 
saves the use of the shared memory. In computing the 
temperature, the shared memory is used similarly, however 
in this case the time derivative term n

kji
t
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the right-hand side of Eq.(2). We fuse the computational 
kernel function of 1
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global memory by keeping the value n
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variable in the kernel function. 
 
2. Performance of Single GPU 

In order to evaluate the performance of the GPU 
computing and check the numerical results in comparison 
with CPU, we also built the CPU code simultaneously. Since 
integer calculations are also done by streaming processors of 
GPU, we count the number of floating point operation of the 
calculation for the dendrite solidification by using the 
hardware counter of the PAPI (Performance API)5) for the 
CPU code. 

The maximum mesh size of the run is 640×640×640 on 
single GPU, because one GPU board of Tesla S1070 has 
4 GByte VRAM (GDDR3). By changing the mesh size, we 
measured the performance of the GPU computing and we 
 

  
 

  

Fig. 1 Snap shots of the dendritic solidification growth 
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had 116.8 GFlops for 64×64×64 mesh, 161.6 GFlops for 
128×128×128 mesh, 169.8 GFlops for 256×256×256 mesh, 
168.5 GFlops for 512×512×512 mesh and 171.4 GFlops 
640×640×640 mesh. The performance of the single CPU 
core (Opteron 2.4 GHz) is 898 MFlops, and it was found to 
be a 190x-speedup on TSUBAME1.2. 

The phase-field calculation consists of 373 floating point 
operations and 28 times global memory access (26 reads and 
2 writes) per one mesh point. The same calculation is carried 
out on every mesh point in single precision. The arithmetic 
intensity is estimated to be 3.33 Flop/Byte. In the case when 
using the shared memory, the number of memory read 
reduces to 2 and the arithmetic intensity increases up to 
23.31 Flop/Byte. It is understood that the calculation is much 
more compute-intensive than Computational Fluid 
Dynamics standards. Therefore, such high performances as 
171.4 GFlops can be achieved in the GPU computing.  
Figure 1 shows the snap shots of the dendritic solidification 
growth. 
 
IV. Multiple-GPU Computing 
1. GPU Computing on Multi-Node 

Multiple GPU computing is carried out for the following 
two purposes: (1) enabling large-scale computing beyond the 
memory limitation on a single GPU card and (2) speedup the 
fixed problem pursuing strong scalability. Multiple GPU 
computing requires GPU-level parallelization constructing a 
hierarchical parallel computing, since the blocks and the 
threads in CUDA have already been parallelized inside the 
GPU. The computational domain is decomposed and a 
sub-domain is assigned to each GPU. 

Using the MPI library for the communication between 
GPU nodes, we run the same process number as the GPU 
number. Direct data transfer of GPU-to-GPU is not available 
and a three-hop communication is required: global memory 
to host memory, MPI communication, host memory to the 
global memory. This communication overhead of the 
multi-GPU computing is relatively much larger than that of 

CPU. In this article a 1-dimensional domain decomposition 
is examined for simplicity. 
 
2. Overlap between Communication and Computation 

In order to improve the performance of the multiple-GPU 
computing, an overlapping technique between 
communication and computation is introduced. Since 
Eqs. (1) and (2) are explicitly time-integrated, only the data 
of one mesh layer at the sub-domain boundary is transferred. 
The GPU kernel is divided into two and the first kernel 
computes the boundary mesh points. At this moment, the 
data is ready to be transferred and the CUDA memory copy 
API from the global memory to host memory starts 
asynchronously as the stream 0. Simultaneously the second 
kernel that computes the inner mesh points starts as the 
stream 1. The overlapping of stream 0 with the stream 1 can 
hide the communication time. 
 
3. Performance of Multiple GPU Computing 

In the four cases: 512×512×512 mesh, 960×960×960 
mesh, 1920×1920×1920 mesh and 2400×2400×2400 mesh, 
their performances are examined with changing the number 
of GPUs for both the overlapping and the non-overlapping 
cases. The strong scalabilities are shown in Fig.2. All the 
cases were done by using one of two GPUs per a node 
combined and connected by single interface card, since we 
want to maintain the GPU-to-GPU communication 
bandwidth as much as possible. 

In every case, the performance of the overlapping 
computation is greatly improved compared with that of the 
non-overlapping. The ideal strong scalabilities are achieved 
up to 8 GPUs for 512×512×512 mesh, from 4 to 24 GPUs 
for 960×960×960 mesh, from 30 to 48 GPUs for 
1920×1920×1920 mesh. We have a perfect weak scalability 
in the extent of the GPU number used in our runs. 

In the overlapping cases, the ideal strong scalabilities are 
suddenly saturated by increasing the GPU number. In 
one-dimensional domain decomposition, the communication 
time does not depend on the GPU number. On the other hand, 
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Fig. 2 Strong Scalabilities of multi-GPU computing 
Fig. 3 Performance Comparison between GPU and CPU on 

TSUBAME 1.2 for the case of 960×960×960 mesh  
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the domain size decreases with increasing the GPU number. 
For instance, runs of 512×512×512 have the longer 
computational time than the communication with less than 32  
GPUs, however the computational time becomes shorter 
than the communication for greater than 32 GPUs. It is not 
possible to hide the communication time any more. 

It should be highlighted that the performance of a 
10 TFlops is achieved with 60 GPUs, which is comparable 
performance of the application running on world top-class 
supercomputers. It took about 1 hour of the elapsed time to 
achieve the full growth in the domain as shown in the last 
snap of Fig. 1. We directly compare the GPU performance 
with the CPU on TSUBAME 1.2 for the same test case of 
960×960×960 mesh. The CPU code is not tuned by using 
SSE and only the optimization option of the compiler is 
applied. In the overlapping case, 24 GPUs show the 
performance of 3.7 TFlops in Fig. 3, and it is noticed that 24 
GPUs are comparable with 4000 Opteron (2.4 GHz) CPU 
cores, even if we assume the perfect strong scalability. 
 
V. Conclusion 

The GPU computing for the dendritic solidification 
process of a pure metal was carried out on the NVIDIA 
Tesla S1070 GPUs of TSUBAME 1.2 by solving a 
time-dependent Ginzbunrg-Landau equation coupling with 
the thermal conduction equation based on the phase-field 
model. The GPU code was developed in CUDA and a 
performance of 171 GFlops was achieved on a single GPU. 
It is found that the multiple-GPU computing with domain 
decomposition has a large communication overhead. Both 
the strong and the weak scalabilities were shown. A 
performance of 10 TFlops was achieved with 60 GPUs, 

when the overlapping technique was introduced. The GPU 
computing greatly contributes to low electric-power 
consumption and is a promising candidate for the 
next-generation supercomputing. 
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