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A gyrokinetic toroidal five dimensional Eulerian code GT5D is ported on six advanced massively parallel platforms
and comprehensive benchmark tests are performed. A parallelisation technique based on physical properties of the
gyrokinetic equation is presented. By extending the parallelisation technique with a hybrid parallel model, the scala-
bility of the code is improved on platforms with multi-core processors. In the benchmark tests, a good scalability is
confirmed up to several thousands cores on every platforms, and the maximum sustained performance of ∼ 19.4 Tflops
is achieved using 16,384 cores of BX900.
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I. Introduction

Turbulence is a common phenomenon observed in most
fluids, and is characterised by its chaotic behaviour and turbu-
lent mixing leading to much larger transport than the molec-
ular diffusion. Such turbulent transport is often observed also
in a fusion plasma. Although a theoretical model for the trans-
port due to Coulomb collisions was established, the transport
levels observed in the experiment normally exceeds predic-
tions by the collisional transport model, and a dominating
cause is considered as plasma turbulence driven by micro-
instabilities, which are characterised by microscopic scale
lengths typically given by the Larmor radius. Since the con-
finement performance is an important factor in determining
the size and cost of a fusion reactor, the understanding of
plasma turbulence is one of critical issues in fusion science.
Because of its basic properties such as large degrees of free-
dom, strong nonlinearity, and sensitivity to the initial condi-
tion, a theoretical treatment of turbulence is an extremely dif-
ficult issue as in neutral fluid turbulence. In addition, plasma
turbulence shows more complex properties such as interac-
tions of multiple fluids (an electron fluid and other ion fluids)
through electromagnetic fields, highly anisotropic turbulent
structures due to the confinement field (see Fig. 1), forcing
due to multiple micro-instabilities over wide spectral ranges,
and kinetic effects such as wave-particle resonant interactions.
Because of these complexity, a direct numerical simulation
(DNS) is becoming important not only as a complementary
approach to obtain physical understanding but also as a tool
for predicting turbulent spectrum and transport in the exper-
iment. However, the first principle model of fusion plasmas
is given by a five dimensional (5D) gyrokinetic model1) (see
Fig. 2), in which the minimum scale length of turbulent fields
is given by the Larmor radius (∼mm). Because of this huge
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requirement on computational resources, DNS of experimen-
tally relevant plasma turbulence was prohibitive before devel-
opments of modern supercomputers. The rapid progress of
computational power extremely enhanced capabilities of gy-
rokinetic simulations,2, 3) which have been established as an
essential tool for studying tokamak turbulent transport. Re-
cent gyrokinetic simulations have provided qualitative under-
standing of rich physics behind tokamak turbulent transport
as well as quantitative estimations for key engineering issues
such as the plasma size scaling of turbulent transport.

However, capabilities of present day supercomputers are
still not enough for simulating the next generation fusion re-
actor such as the international thermonuclear experimental re-
actor (ITER)4) and DEMO reactors, which are several times
larger than existing fusion devices. Therefore, it is very im-
portant to optimise gyrokinetic simulations on advanced mas-
sively parallel platforms. In the last few years, massively
parallel platforms have had qualitative changes by introduc-
ing multi-core processors and quantitative improvements in
the number of processing cores and available memory sizes.
However, it is not so easy to extract the maximum comput-
ing power from such platforms, and sophisticated paralleli-
sation methods are needed. In this work, we present novel
parallelisation techniques based on the physical properties
of the gyrokinetic model, which was implemented on a gy-
rokinetic toroidal 5D Eulerian code (GT5D),5) and discuss
its hybrid parallel extension for multi-core processors. The
code is ported on six advanced massively parallel platforms,
and their performances and computational properties are dis-
cussed. Through the benchmark tests, key issues, which be-
come important in the parallelisation beyond ∼ 104 cores, are
discussed.

The manuscript is organised as follows. Section II presents
the gyrokinetic model used in GT5D. Section III summarises
numerical approaches. Section IV describes parallel imple-
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Fig. 1 The turbulent electrostatic potential observed in an
ion turbulence simulation using GT5D. The turbulent fields
typically show anisotropic structures aligned to the confine-
ment magnetic field lines.

mentations and porting issues on BX900,6) SR16000,7) FX1,8)

Altix3700Bx2,9) T2K(HA8000),10) and BlueGene/P.11) Sec-
tion V gives the benchmark results. Finally, a summary is
given in Section VI.

II. Physical Model
We consider the electrostatic ion turbulence described by

gyrokinetic ions and adiabatic electrons in an axisymmetric
(in ζ see Fig. 3) toroidal configuration. GT5D is based on the
modern gyrokinetic theory,1) in which the gyrokinetic equa-
tion is simply given as the Liouville equation,
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and the gyrokinetic Poisson bracket operator,
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in the gyro-centre coordinates Z = (t;R, v∥, µ, α). Here,
R is a position of the guiding centre, v∥ is the parallel ve-
locity, µ is the magnetic moment, α is the gyro-phase angle,
B = Bb is the magnetic field, b is the unit vector in the
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Fig. 2 Reduction of particle orbit from 6D to 5D by elimi-
nating fast gyro-motion.

parallel direction, mi and e are the mass and charge of ions,
respectively, c is the velocity of light, Ωi = (eB)/(mic) is the
cyclotron frequency, B∗

∥ = b·B∗ is a parallel component of
B∗ = B+(Bv∥/Ωi)∇×b, ϕ is the electrostatic potential, and
the gyro-averaging operator is defined as ⟨·⟩α ≡

∮
·dα/2π

(see Fig. 2). The nonlinear characteristics Ż = {Z,H} are
given as

Ṙ = v∥b

+
c

eB∗
∥
b×

(
e∇⟨ϕ⟩α +miv

2
∥b·∇b+ µ∇B

)
, (6)

v̇∥ = − B∗

miB∗
∥
· (e∇⟨ϕ⟩α + µ∇B) . (7)

By using the phase space volume conservation ∇ · (J Ṙ) +
∂v∥(J v̇∥) = 0, the gyrokinetic equation (1) yields its conser-
vative form,

∂J f
∂t

+∇ · (J Ṙf) +
∂

∂v∥
(J v̇∥f) = 0. (8)

where J = m2
iB

∗
∥ is the Jacobian of the gyro-centre coordi-

nates. By adding a collision term C(f) and a source term
Ssrc, a conservative gyrokinetic equation used in GT5D is
written as,

∂J f
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+∇ · (J Ṙf) +
∂

∂v∥
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= JC(f) + J Ssrc. (9)

Ion-ion collisions are modelled by the linear Fokker-Planck
collision operator,12)
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where ν⊥1, ν∥1, ν⊥2, ν∥2, and ν∥⊥ are collision frequencies,
CF is a field particle operator, s = 2µB/mi and u = v∥−U∥
are a moving frame with respect to the parallel flow velocity
U∥ , and v2 = u2 + s.

The self-consistency is imposed by the gyrokinetic Poisson
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Fig. 3 The coordinate systems used in GT5D.

equation,

−∇⊥ · ρ
2
ti

λ2Di
∇⊥ϕ+

1

λ2De
(ϕ− ⟨ϕ⟩f )

= 4πe

[∫
fδ([R+ ρ]− x)d6Z − n0e

]
, (11)

where R+ρ is a particle position, d6Z = m2
iB

∗
∥dRdv∥dµdα

is the phase space volume of the gyro-centre coordinates, ρti
is the Larmor radius evaluated with the thermal velocity vti,
λDi and λDe are the ion and electron Debye lengths, and ⟨·⟩f
is a flux surface average operator in θ and φ (see Fig. 3).

III. Numerical Methods

1. Gyrokinetic Solver
The conservative gyrokinetic equation (9) is written by us-

ing operators,

∂J f
∂t

= L(f) +N (f) +D(f), (12)

L(f) = −J {f,H0}, (13)
N (f) = −J {f,H1}, (14)
D(f) = JC(f) + J Ssrc, (15)

where we separate the convective term into a stiff linear op-
erator, L involving a fast parallel motion and a non-linear op-
erator N given by turbulent dynamics. As seen in Eq. (9),
the convective operators are partial difference operators in 4D
space (R, v∥), and they are discretised by using the 4th order
accurate non-dissipative conservative finite difference (ND-
CFD),13)

L = (4/3)δ1j(J V0j
1j
f
1j
)− (1/3)δ2j(J V0j

2j
f
2j
), (16)

N = (4/3)δ1j(J V1j
1j
f
1j
)− (1/3)δ2j(J V1j

2j
f
2j
), (17)

where the index j runs through j = 1− 4, V0 and V1 are un-
perturbed and perturbed parts of the Hamiltonian flows given
by Eqs. (6) and (7). The definitions of operators are given as

δnjA ≡ [A(Xj + n∆j/2)−A(Xj − n∆j/2)]/(n∆j), (18)

A
nj ≡ [A(Xj + n∆j/2) +A(Xj − n∆j/2)]/2, (19)

where ∆j is the grid width in the j direction. This finite dif-
ference enables accurate and robust calculations of the turbu-
lent convection by exactly conserving both f and f2. The
stencil grids of L and N consist of 16 neighbouring grid
points in a 4D array. It is noted that in the convective oper-
ators, we use the cylindrical coordinates R = (R, ζ, Z) to
avoid a singularity at the centre of the plasma (see Fig. 3). In
this case, two Hamiltonian flows depend on four coordinates,
V0 = V0(R,Z, v∥, µ) and V1 = V1(R, ζ, Z, µ). In the dis-
sipative operator D, the collision term involving convection
and diffusion in 2D velocity space (v∥, µ) is discretised by the
6th order accurate centred finite difference.

2. Time Integration
In the time-integration, in order to overcome a severe

Courant-Friedrichs-Lewy (CFL) condition, which is deter-
mined by L, we adopt the 2nd order accurate additive semi-
implicit Runge-Kutta method (ASIRK)14) as

J fn+1 = J fn + ω1h1 + ω2h2, (20)
h1 = ∆t [L(fn + a1h1)

+N (fn) +D(fn)] , (21)
h2 = ∆t [L(fn + c21h1 + a2h2)

+N (fn + b21h1) +D(fn + b21h1)] ,(22)

where fn is the distribution function at the n-th time step, ∆t

is the time step width, and coefficients are given as ω1 = ω2 =
1/2, a1 = a2 = 1 −

√
2/2, b21 = 1, and c21 =

√
2 − 1. In

solving Eqs. (21) and (22), we treat the time dependent non-
linear operator N and the dissipative operator D explicitly,
and solve ϕ and the collision frequencies (which are updated
with evolving plasma profiles) once at each stage. We then
solve the linear equation by an iterative approach based on
a generalised conjugate residual method.15) Since the itera-
tive processes use only the time independent linear operator
L, which is calculated in the initial setting, the computational
cost of the ASIRK is significantly lower than full implicit ap-
proaches. It is noted that the size of linear operator is enor-
mous ∼ 1010 with 16 stencil grids in 4D, and therefore, it can
not be stored as a matrix even with a sparse format. Therefore,
the present version of the iterative solver does not use any pre-
conditioning. In a typical parameter with ∆t ∼ 10Ω−1

i , the
iterative solver converges to the machine precision with sev-
eral tens of iterations.

3. Field Solver
Since the gyrokinetic Poisson equation (11) involves an in-

tegral flux surface average operator, the electrostatic poten-
tial is solved in the flux coordinates (ψ, θ, φ), where ψ is the
poloidal flux, θ is the straight-field-line poloidal angle, and
φ = −ζ is the toroidal angle (see Fig. 3). By applying a
toroidal mode expansion in φ and a 2D finite element approx-
imation in (ψ, θ), we have a discrete expression of ϕ,

ϕ(ψ, θ, φ) =
∑
n

∑
l

ϕ̂nlΛl(ψ, θ)e
inφ, (23)

where n is the toroidal mode number and l is an index of 2D fi-
nite elements Λ(ψ, θ). In this work, we use bi-quadratic spline
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Fig. 4 Coordinate transforms between (R, ζ, Z) and
(ψ, θ, φ) using a finite Larmor radius operator.

elements. The boundary condition is given by the Dirichlet
boundary condition, ϕ = 0, at the edge, while the natural
boundary condition is imposed at the magnetic axis. We then
write a matrix form of Eq. (11) as∑

k

Mnlkϕ̂nk = ĝnl − n̂e0nl, (24)

Mnlk =
1

4πei

∫ [
ρ2ti
λ2Di

∇⊥Λl · ∇⊥Λk

+
1

λ2De

(
ΛlΛk − δ(n)Λl

∫
ΛkJdθ

′∫
Jdθ′

)]
dx⊥. (25)

In evaluating ĝnl, we use a similar technique as in a finite
element PIC method.16) Firstly, as shown in Fig. 4, we define
a full finite Larmor radius (FLR) operator based on a finite
point sampling technique,17)

Gl(R⊥, µ) =
1

Nα

Nα∑
j=1

Λl(R⊥ + ρ(R⊥, µ, αj)). (26)

Since the operator is evaluated at fixed Eulerian grids in phase
space, it is time independent and we can choose arbitrary large
number for Nα. By using the full FLR operator, ĝnl is written
as

ĝnl =

∫
Gl(R⊥, µ)f̂n(R⊥, v∥, µ)J dR⊥dv∥dµ. (27)

On the contrary, the gyro-averaged electrostatic potential in
Eq. (4) is given as

⟨ϕ̂n⟩α(R⊥, µ) =
∑
l

Gl(R⊥, µ)ϕ̂nl. (28)

Since both gyro-averaging processes are defined using the
same FLR operator Gl, they do not produce any self-force.
It is noted that in Eq. (27), ĝnl is given in (ψ, θ), while f̂n
is written in (R,Z), and a mapping between two coordinates
and a computation of the FLR effect are performed simulta-
neously by multiplying the full FLR operator. Recently, we
implemented a straight-field-line solver, in which the discrete
Fourier transform (DFT) and field aligned filtering operator

F , is applied to Eq. (20) as FMF−1F ϕ̂ = F(ĝ − n̂e0).
This approach reduces the size of finite element matrix by two
orders of magnitudes by solving only field-aligned Fourier
components, which becomes dominant in fusion plasmas (see
Fig. 1). It was demonstrated that this filtering does not af-
fect simulation results.18) The gyrokinetic Poisson equation is
solved by the LU decomposition in LAPACK.

IV. Parallel Implementation and Porting

1. Parallel Implementation
In GT5D, the gyrokinetic solver treats evolu-

tions of f on 5D grids in the cylindrical coordinates
(NR, Nζ , NZ , Nv∥, Nµ), while the field solver uses 3D grids
in the flux coordinates (Nψ, Nθ, Nφ). In the parallel imple-
mentation, we use a hierarchy of three MPI communicators,
consisting of nMPI = (nR × nZ) × nµ MPI processes, and
each operators are parallelised using their physical properties.
In Eqs. (16) and (17), L and N are discretised by 4D finite
difference operators in (R, ζ, Z, v∥), where µ appears in V0
and V1 as a parameter, and operators with different µ can
be computed in parallel. Anisotropic turbulent structures
require high resolution on the (R,Z) grids (see Fig. 1).
Therefore, we use a 3D domain decomposition in (R,Z, µ)
with (nR × nZ) × nµ domains, where we set nµ = Nµ.
Since the operators are independent in the µ direction, com-
munications of boundary conditions are confined in nR × nZ
MPI processes. On the other hand, D is a 2D finite difference
operator in (v∥, µ), and we use a 2D domain decomposition in
(R,Z). Although the change of parallelisation axes induces
a transpose of the data, this collective communication is
performed among nµ MPI processes. The field solver is
parallelised in a Fourier space using a 2D domain decom-
position in (n, µ), where Fourier modes are solved only for
n = 0 ∼ Nφ/4 to avoid aliasing. It is noted that because
of the gyro-average of ϕ in Eq. (28), the field solver depend
also on µ. A transpose of f from (R,Z, µ) decomposition to
(n, µ) decomposition is performed after the DFT in ζ. This
collective communication uses nR × nZ MPI processes. In
Eq. (27), after multiplying the FLR operator (26), the data
is summed up in the µ direction. This collective communi-
cation is performed among nµ MPI processes. In the above
parallel implementation, a key technique is to confine MPI
communications in a partial set of MPI communicators by
using physical properties and multi-dimensional properties of
each operators. This suppress the size of MPI communicators
below ∼ 100, and avoid global communications with nMPI

MPI processes. In addition to the parallelisation using MPI,
all the MPI processes are subject to the SMP parallelisation
with nSMP cores. In the hybrid parallelisation, the code uses
4D parallelisation axes where the total number of cores is
given by nR × nZ × nµ × nSMP .

2. Cost Distribution
Typical computational costs of GT5D on BX900 are listed

in Table 1. In the cost chart, the cost of N is only 8.5% of L,
and a dominant part of the computational cost comes from an
implicit part of ASIRK which uses L many times. Compared
with it, other costs are sub-dominant, and in particular, the
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Table 1 Typical computational costs of GT5D code on
BX900. Parameters used are (NR, Nζ , NZ , Nv∥, Nµ) =
(240, 64, 240, 128, 32), (Nψ, Nθ, Nφ) = (192, 384, 64),
and nR × nZ × nµ × nSMP = 8 × 4 × 32 × 4 = 4, 096
cores.

Operations Cost per a time step Percentage
(msec) (%)

L,N 7520.8 41.7
ASIRK 6409.8 35.6

D 1271.8 7.1
Field 132.0 0.7

Calc. total 15334.4 85.1
Comm. L,N 1343.4 7.5

Comm. ASIRK 318,1 1.8
Comm. D 587.1 3.3

Comm. Field 436.9 2.4
Comm. total 2685.6 14.9

cost of field solver is negligible, thanks to the straight-field-
line solver. In the communication part, costs of the collective
communications explained in the above are rather small, and
the total communication cost is ∼ 15% at 4, 096 cores. Be-
cause of this low communication property, GT5D can easily
scale beyond ∼ 104 cores.

3. Porting Issues

A summary of platforms used in the present benchmark
tests is given in Table 2. GT5D was originally developed
on Altix3700Bx2. In porting the code on these platforms,
several cares are taken. Firstly, although LAPACK used in
the field solver is common on all the platforms, the DFT is
implemented using a multi-stream 1D complex fast Fourier
transform (FFT) available in numerical libraries on each plat-
forms. Secondly, depending on the processor type, several
tuning techniques are applied. Since the Itanium2 processor
on Altix3700Bx2 is a single core processor, the code was de-
veloped for a flat-MPI parallelisation. However, most of re-
cent platforms use multi-core processors, and therefore, a hy-
brid parallelisation technique with MPI and SMP is applied
using an auto SMP parallelisation function of each compiler.
Auto parallelisation functions on Fujitsu Fortran and on Hi-
tachi Fortran are effective for most of loops, except for less
than ten loops which involve some data dependency such as a
reduction operation. By applying additional explicit SMP par-
allelisations (OpenMP on Fujitsu Fortran and poption direc-
tives on Hitachi Fortran), the SMP parallelisation is applied to
all the loops. On the other hand, auto parallelisation functions
on Intel Fortran and IBM XL Fortran do not work for most
of loops, and they requires a full explicit parallelisation using
OpenMP, which has not been implemented yet. Therefore,
we use a flat MPI parallelisation on Altix3700Bx2 and Blue-
Gene/P, while a hybrid parallelisation is applied on SR16000,
HA8000, FX1, and BX900. It is noted that on BX900, both
Intel Fortran and Fujitsu Fortran are available, and we use a
flat MPI parallelisation when Intel Fortran is used. On IBM
processors, a special care has to be taken to use double float-

Table 3 Summary of the sustained performance (Gflops per
core) and the peak ratio (%) of the GT5D kernel code with
a) single core operation, b) embarrassingly parallel MPI
(EP) operation, and c) SMP operation. The size of 4D array
used is (52, 84, 68, 104).

BX900 SR16k FX1 Altix T2K BG/P
Single
Gflops 3.41 2.40 2.49 1.92 1.48 0.47

% 29.1 12.8 24.9 30.0 13.7 13.7
EP

Gflops 1.86 3.17 1.33 1.15 0.68 0.43
% 15.9 16.9 13.3 18.1 7.4 12.7

SMP
Gflops 1.85 3.05 1.36 - 0.68 -

% 15.8 16.2 13.6 - 7.4 -

ing point unit (FPU) pipelines efficiently. On SR16000, the
system operates with a simultaneous multi-threading (SMT)
mode, where two SMP threads are assigned to a single core.
This improves the usage of double FPU pipelines without any
change in user’s program. On the other hand, we applied ad-
ditional optimisation to use double FPU SIMD operations on
BlueGene/P.

V. Benchmark Results

1. GT5D Kernel
We start the benchmark by looking at serial and SMP per-

formances on each processors. To this end, we prepare a
GT5D kernel code which consists of L and vector operations
in a generalised conjugate residual method. This kernel treats
large 4D arrays (a single array size is ∼ 200MB in the bench-
mark in Table 3), and the 4D finite difference operator has
large strides of memory access. Therefore, its performance
strongly depends on the cache and the memory bandwidth
available on each processors. To look at these effects, we
measured the performance in three different conditions, a)
single core operation, b) embarrassingly parallel MPI oper-
ation (which does not involve any communication among pro-
cesses), and c) SMP operation. In b) and c), a computing node
is filled with MPI and SMP processes, which share the cache,
the memory bandwidth, and the memory on the node. In c),
the number of SMP threads is chosen to be same as the number
of cores per a processor (SR16000 uses 4 threads per a proces-
sor because of SMT), and multiple SMP operations are pro-
cessed with an embarrassingly parallel mode. Table 3 shows
a summary of the benchmark results. Although the number of
floating point operations changes depending on the platform,
in the benchmark, we estimate floating points per a second
(flops) by using the flop counts on Altix3700Bx2 and the pro-
cessing time on each platform. In the case a), BX900 and Al-
tix3700Bx2 show excellent performances reaching at the sus-
tained performance of ∼ 30%. On BlueGene/P, the sustained
performance is improved from 8.6% to 13.7% by applying op-
timisations to use double FPU SIMD operations. In the case
b), most of platforms show degradation of performances, ex-
cept for SR16000. This improvement is due to SMT opera-
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Table 2 Summary of platforms used in the benchmark

Machines BX900 SR16000 FX1 Altix3700Bx2 T2K(HA8000) BlueGene/P
Processor Nehalem-EP POWER6 SPARC64VII Itanium2 Opteron PowerPC450

GHz 2.93 4.7 2.5 1.6 2.3 0.85
Gflops/core 11.72 18.8 10.0 6.4 9.2 3.4

On chip cache(MB) 8 4 6 6 2 8
Cores/Processor 4 2 4 1 4 4

Cores/Node 8 32 4 128 16 4
Memory/Node(GB) 24 256 32 819 32 4

Interconnect InfinibandQDR InfinibandDDR InfinibandDDR NUMAlink Myrinet10G BG/P network
GB/s 8×2 16×2 2×2 3.2×2 5×2 5.1×2

Compiler Fujitsu Fortran Hitachi Fortran Fujitsu Fortran Intel Fortran Hitachi Fortran IBM XL Fortran
FFT Library SSL2 MATRIX SSL2 SCSL MATRIX FFTW

tion, which efficiently fills double FPU pipelines. As a result,
the sustained performance of SR16000 becomes comparable
to BX900 and Altix3700Bx2. On most of platforms (BX900,
FX1, Altix3700Bx2, and T2K), the sustained performance is
decreasing to about a half of the case a), which clearly shows
that the memory access is limiting the total performance. On
the other hand, BlueGene/P shows a small degradation of the
sustained performance, suggesting that its performance is still
limited by the FPU operation rather than the memory access.
In the case c), all the platforms tested show no degradation of
the sustained performance compared with the case b), which
shows that costs related to overheads such as the barrier syn-
chronisation is very small.

2. Hybrid Parallel
Table 4 shows comparisons of flat-MPI and hybrid parallel

operations of GT5D using 4,096 cores on BX900. In the com-
parison, we also tested a flat-MPI operation with Intel Fortran.
In flat-MPI cases, Intel Fortran and Fujitsu Fortran show simi-
lar performances. Compared with these performances, hybrid
cases show two important improvements. Firstly, the mem-
ory usage is significantly decreased in the hybrid parallel case
due to the reduction of 1) boundary buffers in the domain de-
composition, 2) replicas of operators used in the field solver,
3) working arrays used in the data transpose, and 4) buffers
used by the system in MPI communications. In the present
test case, the total memory usage is reduced by ∼ 59% at
nSMP = 4 and ∼ 67% at nSMP = 8. The 1/3 reduction
of memory usage is a significant reduction of the computa-
tional cost. Secondly, as is expected, the reduction of MPI
processes leads to the reduction of MPI communication costs.
In the 4,096 core case, the reduction of communication cost
is ∼ 10% of the total cost. This improvement becomes more
pronounced beyond 104 cores, and the hybrid parallelization
becomes essential in this regime. The reduction of MPI pro-
cesses is one of key issues in achieving good scalability. On
BX900, the best performance is obtained at nOMP = 4, be-
cause it fits the number of cores per a processor.

3. Scaling
Figure 5 shows the sustained performances obtained in

the strong scaling tests. Because of the memory limit,
Altix3700Bx2 and T2K use a slightely small problem

Table 4 Comparisons of computational performances of flat-
MPI and hybrid parallel operations on BX900. The problem
size is (NR, Nζ , NZ , Nv∥, Nµ) = (240, 32, 240, 128, 32),
(Nψ, Nθ, Nφ) = (192, 384, 64). 4,096 cores with nR ×
nZ×nµ×nSMP = 16×8×32×1, nR×nZ×nµ×nSMP =
8×4×32×4, and nR×nZ×nµ×nSMP = 4×4×32×8
are used.
Fortran Compiler Intel Fujitsu Fujitsu Fujitsu

SMP 1 1 4 8
Total/step(msec) 10231 10397 9287 10929

Comm./step(msec) 2415 2608 1517 1534
Total memory(GB) 3641 3754 1545 1250
Sustained Gflops 4979 4900 5486 4661

size with (NR, Nζ , NZ , Nv∥, Nµ) = (240, 64, 240, 100, 32),
while the other platforms use (NR, Nζ , NZ , Nv∥, Nµ) =
(240, 64, 240, 128, 32). The compiler options used in each
platforms are summarized in Table 5. In the benchmark, flops
are estimated based on the flop counts on Altix3700Bx2 and
the processing time on each platform. On every platforms,
GT5D scales very well up to the maximum available cores.
The sustained performances around ∼ 2, 000 cores are sum-
marized in Table 6. The performance roughly follows the sus-
tained performance of the GT5D kernel except for SR16000,
which has the minimum interconnect bandwidth per a thread
(0.25GB/s/threads). On BX900, the sustained performance is
above 10% up to 8,192 cores, and the maximum sustained
performance at 16,384 cores is ∼ 19.4Tflops (10.1%). At
16,384 cores, the communication cost is ∼ 35.2% of the total
cost. According to the Amdahl’s law, a processing time with
n cores Tn is written as

Tn
T1

=
1

1− a+ a/n
, (29)

where a is the parallel efficiency (or the ratio of operations
which are parallelised). When one has the processing time Tn
and Tm at n and m cores, Eq. (29) yields a as

a =
Tn − Tm

Tn
m−1
m − Tm

n−1
n

. (30)

From the performance data of BX900 at 2,048 and 16,384
cores, the parallel efficiency is estimated as a ∼ 0.999969.
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Fig. 5 The strong scaling of GT5D. The problem
size is (NR, Nζ , NZ , Nv∥, Nµ) = (240, 64, 240, 100, 32)
for Altix3700Bx2 and T2K. The other platforms use
(NR, Nζ , NZ , Nv∥, Nµ) = (240, 64, 240, 128, 32).

Table 5 Compiler options used on each platforms.

BX900 -Kfast -Kparallel,OMP -Kmfunc=2 -Kocl
SR16k -Oss -64 -precexp=basic -model=L1
FX1 -Kfast -Kparallel,OMP -Kmfunc=2

-Kocl -Kprefetch_cache_level=1
Altix -O3 -ipo
T2K -Oss -64 -HF90 -precexp=basic
BG/P -qarch=450d -qtune=450 -O3 -qhot

By using a, the parallelisation efficiency (or the ratio of cal-
culation time to the total processing time) is given as

En =
Tn
T1n

=
1

n(1− a) + a
. (31)

This relation indicates that in the present benchmark case,
the calculation and communication costs become comparable
(En = 0.5) at n ∼ 30, 000 cores. It is noted that in a strong
scaling test, the size of the benchmark problem is limited by
the memory size available at the minimum number of cores,
and the parallel efficiency may be further improved by using
larger problem sizes.

VI. Summary
In this work, we have presented the performances of GT5D

code on advanced massively parallel platforms. GT5D solves
the 5D gyrokinetic equations, and all the operators in the gy-
rokinetic solver and the field solver are highly parallelised
with multi-dimensional domain decomposition by taking ad-
vantages of physical properties of each operators. One key
technique in the parallelisation is to confine MPI commu-
nications in a subset of communicators and to avoid global
communications among all the MPI processes. Another key
technique is to reduce the number of MPI processes via a
hybrid parallelisation with MPI and SMP. By using the 4D
(nR, nZ , nµ, nSMP ,) hybrid parallelisation, the sizes of MPI
communicators are suppressed below ∼ 100 even beyond 104

cores. The hybrid parallel technique is also effective in re-

Table 6 Summary of the sustained performances (Tflops) and
the peak ratio (%) at ∼ 2, 000 cores in the scaling tests
shown in Fig. 5.

BX900 SR16k FX1 Altix T2K BG/P
Cores 2048 2048 2048 1920 2048 2048
SMP 4 4 4 1 4 1

Tflops 3.42 3.12 2.14 1.75 1.23 0.81
% 14.2 8.1 10.5 14.3 6.6 11.7

ducing the memory usage. The code is ported on six mas-
sively parallel platforms, and comprehensive benchmark tests
were performed. The benchmark of GT5D kernel showed that
its performance is limited mainly by the memory access, and
that the sustained performance strongly depends on the pro-
cessor type. The scaling tests of GT5D also showed similar
tendency in the sustained performance. In the benchmark re-
sults, a good scalability was confirmed up to several thousands
cores on every platforms, and the maximum sustained perfor-
mance of ∼ 19.4 Tflops was achieved using 16,384 cores on
BX900.

Compared with the present benchmark parameter, the prob-
lem size of the next generation fusion reactor will be sev-
eral times larger in the size (more than an order of magni-
tude larger in the volume). In addition, a computation of
electromagnetic turbulence requires a treatment of fast elec-
tron motion, which is faster than ions by ∼

√
mi/me. It

is noted that the field solver and parallelization techniques
developed on GT5D can be applied also to electromagnetic
turbulence, provided that its amplitude is small and the low-
est order magnetic configuration is given by nested magnetic
surfaces. To achieve an order of magnitude larger computing
power, a plausible option would be to use many-core proces-
sors, provided that the memory access can keep up with the
increasing number of cores. In addition, improvements in the
MPI parallelisation would be required. The present version of
GT5D uses only three coordinates (R,Z, µ) as the MPI par-
allelisation axes, and we still have a possibility to improve the
parallelisation using remaining two coordinates (ζ, v∥). This
multi-dimensional property is the strength of gyrokinetic sim-
ulations. In future works, further improvements of GT5D will
be addressed toward Peta and Exa scale computation.
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