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The integration of several codes to simulate physical processes or components of a nuclear energy facility facili-
tates large-scale, detailed simulation. However, integrated simulations require several weeks or months of CPU time. 
We developed a fault-tolerant method for cooperative execution of codes, which avoids unscheduled outage of com-
puters or networks. The method deals with abnormal job terminations on supercomputers and file transfer errors. If a 
computer causes an unexpected outage, the method attempts to submit the simulation task to an alternative computer. 
The method also detects transfer errors by comparing the size of files before and after transfer. The relationship be-
tween jobs and file transfers is connected by the fault-tolerant method, which allows us to decide the execution order 
of codes by definition of file flow. This enables the operation on integrated simulations where codes are executed se-
quentially or concurrently. 
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I. Introduction1

Large-scale integrated simulations have been developed 
in the nuclear energy field to investigate physical and engi-
neering behavior at the microscopic and macroscopic level, 
both in the short-term and long-term. These simulations 
cannot be executed using a single job class on a computer, so 
integrated simulations are required that couple several simu-
lation codes, each of which handles a physical process or an 
engineering component of the overall system.  

 

We developed a full-scale three-dimensional vibration 
simulator for an entire nuclear power plant (NPP) as a dem-
onstration of a large-scale integrated simulations in the 
nuclear energy field.1) We used the simulation to Predicting 
Quake-Proof Capability of Nuclear Power Plant, and to in-
vestigate a burning plasma simulation.2) The full-scale 
three-dimensional vibration simulation of an entire nuclear 
power plant, where cooperation of the code allowed analysis 
of each component’s behavior, meant we could realize 
physical phenomena, such as local deformation caused by 
interactions between components. The Quake-Proof Capa-
bility of Nuclear Power Plant was predicted using the 
cooperation of codes for each physical phenomenon, includ-
ing seismic simulation, structure analysis, thermal hydraulics, 
and nuclear reaction. We predicted the behavior of burning 
plasma in a tokamak reactor using a burning plasma simula-
tion, where the codes cooperated to deal with current 
transport, stability analysis, and current drive. 3) The simula-
tion handled short-term phenomena within microseconds and 
analyzed the behavior in several minutes. These simulations 
can have very wide temporal and spatial ranges. 

                                                                                                   
*Corresponding author, E-mail: tatekawa.takayuki@jaea.go.jp 

The cooperative integration of simulation code on distri-
buted computers is problematic. Grid computing technology 
has been used for coupling heterogeneous computers. 
Workflow tools, such as Kepler4) and TME,5) enable the 
construction and execution of integrated simulations on the 
grid. These tools are easily used by researchers, but applica-
tions of these tools on integrated simulations are limited. 
However, remote procedure calls (RPC)6) or grid-enabled 
MPI, such as STAMPI,7) MPICH-G,8) or PACX MPI,9) can 
be applied to different integrated simulations, although sub-
stantial modifications of codes are required. Therefore, it is 
necessary to develop a grid computing technology that 
enables researchers in nuclear energy field to more easily 
operate a variety of integrated simulations. Furthermore, it is 
important that substantial modifications of each code are not 
required by any new technology. 

Cooperative execution of codes requires file flow between 
the codes. We developed Simple Orchestration Application 
Framework (SOAF)2,3) where the cooperative execution of 
codes is based on file flow. In this framework, users run in-
tegrated simulations on remote supercomputers from a client 
PC. No substantial modification of simulation codes is re-
quired. SOAF can handle a variety of integrated simulations.  

It is necessary to reduce the amount of effort researchers 
spend on client application development. SOAF is imple-
mented using application program interfaces (APIs) on the 
grid infrastructure of the Atomic Energy Grid InfraStructure 
(AEGIS).1,10-12) Users can easily develop a grid-enabled 
client application using AEGIS APIs.  

SOAF uses a fault-tolerance (FT) method13) when con-
ducting long-term integrated simulations. Integrated 
simulations can require several weeks or months of CPU 
time. When a job is stopped by an execution time limit or an 
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unexpected outage of computer, the method automatically 
resubmits the job to same or an alternative computer.  

We also need to handle file transfers in long-term inte-
grated simulations. The files transferred between codes can 
be huge in large-scale simulations, which means that file 
transfers can take a long time. It is important to correctly 
handle file transfers during computer or network outages. 
Furthermore, when a job is submitted to alternative comput-
ers by the FT mechanism, the file transfer processes can 
change. SOAF cannot adequately deal with file transfer 
problems. 

We developed a FT method for job execution and file 
transfer in integrated simulations performed on AEGIS. The 
FT method is also implemented on the AEGIS API (referred 
to as the "FT API"). When an unscheduled computer outage 
occurs, the FT method resubmits a terminated job. After 
resubmission, the computer and its directory corresponding 
to file transfer destinations are automatically modified. The 
FT method also manages file outputs on departure and 
transfers them to their destinations immediately after file 
output is completed. The completion of file transfer is con-
firmed by comparing file sizes before and after transfer. 
When a file transfer fails, the FT method automatically re-
tries file transfer. 

During FT API development, we investigated file flow 
between simulation codes. We defined the relationship be-
tween simulation codes and files transferred between codes, 
which made it easier to handle the integrated simulation 
from a client PC. 

 
II. Fault-Tolerant Mechanism of Job Execution 
1. AEGIS Client API 

AEGIS is grid middleware that we developed for atomic 
energy research. The schematic diagram of AEGIS is shown 
in Fig. 1. Users operate jobs on supercomputers from a client 
PC in AEGIS. Communication between the client PC and 
the supercomputer is secure. 

A client application is required to operate jobs on super-
computers in AEGIS. We developed a client API as a 
function of AEGIS to develop grid-enabled applications on a 
client PC. The main functions were implemented on the 
client API, so users can easily develop their applications 
using the API. The client API can work on other grid mid-
dleware, such as UNICORE, DIET, and Globus.10) During 
authentication, we use an IC card or USB e-Token, which 
includes a certificate (PKCS#11).  

The client API is classified into low, middle, and high 
level APIs based on their functions. In low level APIs, the 
authentication API, file transfer API, job submission API, 
and job information API are classified. The jobscript gene-
rator API is classified as a middle level API.  

Low level APIs supply authentication, connections be-
tween a client PC and supercomputers on AEGIS, job 
operation to supercomputers, resource handling on both the 
client's PC and supercomputers, and other tasks. The API 
cooperates with the Remote Install Service (RIS) daemon on 
computers and requests resource information from comput-

ers, including the job status, at fixed time intervals. For ex-
ample, if a job exceeds the execution time limit or the job 
causes an error, such as an I/O error, the AEGIS middleware 
on the supercomputer replies with an abnormal error. If the 
communication between the client PC and the supercompu-
ter is disconnected or the middleware on supercomputer 
stops unexpectedly, the API receives no response. The API 
then returns “connection error” to the client application. Fi-
nally the client application decides that an unexpected 
outage has occurred.  

The jobscript generator API generates a script corres-
ponding to heterogeneous computers by reading job 
attributes, such as computer name, job class, number of 
CPUs, path of program, and work directory. 

Using the functionality of low level and middle level 
APIs, the FT method is achieved. 
 
2. Simple Orchestration Application Framework 

During integrated simulations we observed the file flow 
between codes. The file transfer triggers new code execution 
during the cooperative execution of codes. Therefore, de-
scribing the file flow between codes allows us to construct 
scenarios for integrated simulations.  

In addition to the low level and middle level APIs, we al-
so developed SOAF2,3) as an FT method for job execution 
and job cooperation. Integrated simulation is driven by file 
flow. In SOAF, we categorize simulation codes into the fol-
lowing two types: the first is the initial code and the second 
is the code initiated after receiving files from other codes. At 
the end of file output or file transfer a "flag file" is created as 

Fig. 1 Schematic diagram of AEGIS 
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well as the output file or transferred file. SOAF detects the 
flag file and commences file transfer or job execution.  

SOAF consists of a client API (referred to as SOAF API) 
and server script programs (sentinels). SOAF API is catego-
rized as a dominance layer. When the SOAF API detects 
abnormal job errors, the API resubmits the jobs to the same 
or alternative computers via low level APIs and a jobscript 
generator API. Users can easily implement the FT mechan-
ism on the client application. 

We observed the behavior of SOAF. For example, we as-
sumed a basic case (Fig. 2). Here we suppose that there are 
two codes, Code A and Code B. Code A and Code B are 
executed by Job A on computer 1 and Job B on computer 2, 
respectively. After the completion of Job A, File A is an 
output from Code A and it is transferred from Computer 1 to 
Computer 2. After file transfer, Job B starts and code B 
reads File A. 

Users can operate this cooperative execution from a client 
PC. Users define the file flow between Code A and Code B. 
When Code A generates file A, SOAF transfers it from 
computer 1 to computer 2. After this, SOAF submits the job 
of Code B.  

By defining the file flow, we can execute various inte-
grated simulations using different flow types or categories, 
such as sequential, concurrent, or branch conditional. The 
file transfer triggers code execution. The jobs and file trans-
fers are related and defined in the client application. The 
timing of file transfer is also defined in the client applica-
tion. 

When the SOAF API detects abnormal job errors, the API 
resubmits the jobs to the same or alternative computers via 
low level APIs and a jobscript generator API. 

SOAF recovers any abnormal job terminations, but it does 
not handle file transfer errors. The large-scale simulation 
involves long-term simulation and large file transfers. If a 
network outage occurs during file transfer, the file transfer 
will not complete correctly. Thus, we developed a method 
for long-term cooperative simulations.  

 
III. Fault-Tolerant Mechanism for File Transfer 
1. File Transfer Procedure  

If a network outage occurs during file transfer, the files 
will not be transferred correctly. File transfer errors occur 
during abnormal terminations of integrated simulations. 

During long-term simulations, the FT method must ensure 
job execution and correct file transfer.  

We developed FT API for AEGIS. The FT API monitors 
the job status and file transfers via low level APIs. The FT 
API evaluates file transfer between codes by comparing file 
sizes. 

The sentinel monitors file outputs from simulation code. 
When the sentinel detects a flag file from an output file, the 
sentinel ends. The client application detects the end of the 
sentinel and begins file transfer. Cooperative execution re-
quires the installation of a sentinel program in addition to the 
executable codes.  

Here we describe the procedure for file transfer between 
codes. The procedure for the simple case in Fig. 2 is shown 
in Fig. 3.  

1) Code A generates File A and its flag file. 
2) The sentinel for Code A detects the flag file and 

ends. 
3) File A is transferred from computer 1 to computer 

2.The name of File A is changed to a temporary 
name in computer 2. 

4) The FT API compares the size of files on computer 1 
and computer 2. If these coincide, the API decides 
that the file transfer has completed correctly. If not, 
the API transfers File A again until the maximum 
limit of file re-transfers. 

5) File A is renamed to its original name. 
6) A flag file for File A is created by the sentinel on 

computer B.  
7) Code B detects the flag file for File A and reads File 

A. 

When the job is stopped by an abnormal error, the low 
level AEGIS API detects this error through the response to 
the inquiry received on the computer. The job is then mi-
grated to another supercomputer by the FT API. The 
relationships between jobs and file transfers are defined in 
the client application, so the file transfer would change at job 
resubmission. 

If a transfer error occurs, such as a network outage, the 
low level AEGIS API detects this error via the response to 
the file transfer command. The FT API retries the transfer, 
regardless of the type of error, because low level AEGIS 

Fig. 2 Basic example. Code A and Code B are executed se-
quentially. The dashed line indicates file transfer. File A is 
transferred between code A and code B. Fig. 3 File transfer between Code A and Code B. After file 

transfer, the FT API compares the size of File A before and after 
transfer.  
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APIs cannot determine the origin of the error from the de-
tails. The file size is investigated by low level AEGIS APIs 
on both computers. 

We consider that there are two patterns of migration. First, 
we consider an unexpected outage during job A (Fig. 4). If 
job A is migrated from computer 1 to computer 3, the source 
of the file transfer is also changed. If computer 1 does not 
cause outage, the FT API transfers file A in “transfer 2”. 
Then file A is transferred in “transfer 3”. 

If there is an unexpected outage during job B, the FT API 
changes the receiver of the file transfer (Fig. 5). If job B is 
migrated from computer 2 to computer 3, the destination of 
the file transfer also changes. The FT API changes the file 
transfer from “transfer 1” to “transfer 2”. 

We now consider a more complicated cooperative execu-
tion. Here we suppose that there are 5 codes (code A, B, C, 
D, and E) running on 5 computers (computer 1, 2, 3, 4, and 
5). These codes are executed sequentially as shown in Fig. 6. 
When the execution of code E finishes, connections D-E and 
E-C are disconnected simultaneously.  

We consider two possible cases. If computer 5 is discon-
nected from all other computers, the low level API on client 
PC receives no response to a job status query from computer 
5. Therefore, the client application decides that an “abnormal 
error occurred on computer 5.” Code E is then migrated to 
an alternative computer by the FT API. Following this mi-
gration, files from code D are also migrated from computer 4 
to an alternative computer, according to the configuration on 
the client application. If no alternative computer is available 
for computer 5 in the configuration of the client application, 
the FT API stops all jobs and causes an abnormal termina-
tion.  

However, if connections between computer 5 and other 
computers are normal, the file transfer would still not work 
well. This is because the low level API receives a normal job 
status response from computer 5, but the file transfer proce-
dure returns an error code. The APIs cannot recognize origin 
of this error from the details, so the FT API repeats the re-
transfer from E to C until the maximum number of 
executions defined in the client application configuration. 

The FT API cannot recover the file transfer between com-
puter 5 and computer 3. Finally, the FT API returns an error 
stating that “number of file retransfers is exceeded”. The 
client application then causes an abnormal termination. 
 
2. Evaluation of the FT Method 

We evaluated the robustness of file transfer. Here we 
consider the simple cooperative operation from the previous 
section (Fig. 2). Code A was implemented on a PC cluster at 
Naka Fusion institute of JAEA. Code B was implemented on 
p690 at CCSE/JAEA Ueno site. File A was about 15 MB 
and it was transferred from Naka to Ueno in 15 seconds. 
After transfer, the FT API compared the file size before and 
after transfer and changed the name of file (Procedure 4 in 
previous subsection). This procedure was finished in one 
second. 

We evaluate the behavior after an abnormal error caused 
by an artificial procedure. In our experiment, the FT API 
immediately recovered the error. First, we deleted the tem-
porary file for File A. After completion of the transfer 
procedure on computer A, the FT API detected the absence 
of File A. The FT API then retried the transfer of File A. The 
sequence of the procedure from the completion of file trans-
fer to retransfer took only a few seconds. Next, we changed 
the temporary file for File A to another file before compar-
ing the file size. Of course, the file sizes are difference. After 
completion of the transfer procedure on computer A, the FT 
API compares the file sizes. The FT API decides that a 
transfer error has occurred and retries the transfer. The se-
quence of procedures from the completion of file transfer to 
retransfer takes only a few seconds. 

Fig. 4 Migration of code A. Following migration, the FT API 
changes the file transfer from “transfer 1” to “transfer 2” and 
“transfer 3”. 

Fig. 5 Migration of code B. Following migration, the FT API 
changes the file transfer from “transfer 1” to “transfer 2”. 

Fig. 6 Cooperative execution of 5 codes. During execution, 
connections D-E and E-C are disconnected simultaneously. 
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To detect file collapse, there is often a comparison of hash 
values before and after file transfer. We computed hash val-
ues with MD5 and SHA1 to test the robustness of file 
transfer. The time required was as follows: 0.14 seconds on 
PC cluster, MD5; 0.19 seconds on p690, MD5; 0.17 seconds 
on PC cluster, OpenSSL 0.9.6b+SHA1; 0.11 seconds on 
p690, OpenSSL 1.0.0a+SHA1. Our framework can evaluate 
the actual speed of file transfer, but it cannot detect file col-
lapse. We plan to add a hash function to the framework to 
allow the detection of file collapse. 

 
IV. Application of the FT API to Nuclear Energy 

Simulations 
We applied the FT API to nuclear energy simulations. 

Here we consider two integrated simulation scenarios. We 
used test codes in the evaluation. The relationship between 
simulation codes and input/output files was defined in the 
client application configuration for the FT API. The client 
application operates job execution and file transfer timing 
based on this definition. 

We considered a full-scale three-dimensional vibration 
simulation for the entire NPP,1) which is a full-scale seismic 
analysis system to analyze the response of an entire digita-
lized NPP to an earthquake or vibration effect. 

The simulator divides the NPP into several component 
units. Each component was analyzed by FInite Element 
STructural analysis for Assembly (FIESTA). The mutual 
vibration effects among components are modeled as data 
exchanges at component boundaries, at each simulation time 
step. 

We aimed to perform a full-scale seismic response analy-
sis of the High Temperature engineering Test Reactor 
(HTTR)15) at O-arai R&D center of JAEA. In this scenario, 
the plant consisted of Reactor Pressure Vessel (RPV), Aux-
iliary Water Air Cooler (AWAC), Pressurized Water Air 
Cooler (PWAC), and 3 pipes (PIPE1, PIPE2, and PIPE3). In 
the integrated simulation, the codes for AWAC, RPV, and 
PWAC were executed in parallel. During the simulation, the 
boundary conditions among the large components (AWAC, 
RPV, and PWAC) and the pipes are sent from the codes for 
AWAC, RPV, and PWAC to those for the pipes. Data con-
version codes (pre1 and pre2) were executed among the 
codes of the large components and the pipes (Fig. 7). 

File flow between the codes is shown in Fig. 8. Six codes 
were executed in parallel during the integrated simulation. In 
the client application, we defined the timing of the execution 
of pre1 and pre2 after file transfer from the large compo-
nents to the pipes. These codes are executed after pre1 or 
pre2 received a file from the large components. The output 
files for the pipes were then generated. The codes of pipes 
await the receipt of a file from pre1 or pre2. The integrated 
simulation was conducted after we modified the codes for 
the pipes relating to the waiting files from the pre codes. 

The difference in total execution time between the im-
plementation of the FT API and the SOAF API was less than 
one minute. The actual execution of this simulation required 
about ten days, so the difference was tiny. 

We now consider another scenario. Simulations for Pre-
dicting Quake-Proof Capability of Nuclear Power Plant are 
considered important for the verification of the safety capac-
ity of ageing nuclear power plants that might be subjected to 
a large earthquake. An integrated analysis of seismic waves, 
structure of the nuclear power plant, thermal hydraulics, and 
the nuclear reaction was required for verification. 

The integrated simulation consisted of the Macro-Micro 
Analysis method (MMA),16) ADVanced ENgineering analy-
sis Tool for Ultra large REal world (ADVENTURE),17) 
BWR 3D-Neutronic Thermal-Hydraulic Code 
(TRAC-SKETCH),18) Advanced Code for Evaluation of 
3-Dimensional constitutive equations in a two-fluid model 
(ACE-3D),19) and data conversion codes to use among the 4 
simulation codes (Fig. 9). The codes were executed sequen-
tially.  

File flow between the codes is shown in Fig. 10. In this 
scenario, the simulation codes were executed sequentially. In 
the client application, we defined the timing of the execution 
of ACE-3D after file transfer from both ADVENTURE and 
TRAC-SKETCH. During sequential execution, we had to 
modify the simulation codes to allow generation of a flag 
file. 

A maximum of six stages of file transfer occurred from 
MMA to ACE-3D. The total execution time for file compar-
ison by FT API was less than one minute. The effect of the 
file comparison to the total time for executing the simula-
tions was quite tiny. 

Fig. 7 Cooperative execution of FIESTA. The integrated simu-
lation consists of three layers. The codes for AWAC, RPV, and 
PWAC are executed in parallel. 

Fig. 8 File flow between simulation codes. AWAC, RPV, and 
PWAC send boundary conditions among themselves and the 
pipes. The conditions data is converted by pre1 and pre2. After 
conversion, data are sent to the pipes. In this integrated simula-
tion, 6 simulation codes are executed in parallel. 
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V. Conclusion 
We developed a fault-tolerant (FT) method for job execu-

tion and file transfer. The FT method was applied to 
long-term simulations to avoid unexpected computer stop-
pages or network outages.  We implemented the method 
with an AEGIS API. Users can easily develop client applica-
tions that operate in long-term integrated simulations.  

In our experiment, the FT method immediately detected 
file transfer errors. When the transferred file was deleted or 
replaced by another file, the FT API detected a file transfer 
error and retransferred the same file in several seconds. We 
can conclude that the FT method was beneficial for the op-
eration of integrated long-term simulations. 

We evaluate the behavior of integrated simulations using 
the FT mechanism. We considered two scenarios from the 
nuclear energy field. In the first scenario, simulation codes 
were executed sequentially. In the second scenario, the codes 
were executed concurrently. In both cases, the client applica-
tion could operate the integrated simulations. We controlled 
various simulations of the nuclear system using the FT me-
thod. 

We considered the operation of realistic nuclear energy 
simulations. For example, execution of the 
three-dimensional Virtual Plant Vibration Simulator required 
about 10 days for 99 steps. Using the FT API, we could re-
cover job execution and file transfer in long-term 
simulations. Substantial modification of codes was not 
needed for cooperative execution. Use of the FT API enables 
the automated execution of integrated simulations and is also 
expected to reduce the development time for integrated si-
mulations. 
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