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Numerical methods were newly developed to perform transient calculation based on the α -mode with a multi-
group Monte Carlo code GMVP. Two methods to search α were investigated; one is a Newton-based-method with a 
use of adjoint solution, and the other is a quasi-Newton-method, which does not require the adjoint solution. The fea-
sibility of the latter method was verified through numerical tests. The whole structure of the neutronic calculation 
module is shown together with some experience concerning with tally setting. 
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I. Introduction1

In JNES, the ASTERIA-FBR code1) is developed as the 
principal tool to investigate the time dependent neutronics 
behaviors during core disruptive accidents of liquid metal 
cooled fast breeder reactors (LMFBRs). The precedent codes 
developed for the same purpose, such as SIMMER-III 
code,2-3) have been based on deterministic methods, espe-
cially the discrete ordinate method.4) The scheme worked 
fine in two-dimensions, although several drawbacks of the 
method have been pointed out; deterioration of solutions by 
the ray effect5) with a low-order angular quadrature, and by 
the fixed up procedures6) after negative flux appeared during 
a calculation. The possibility of producing unjustified results 
from SIMMER-III when the fixup is significant is reported 
in Ref. 7). Moreover, the extension to 3-dimensions will be 
indispensable in the near future and then it will be a tough 
challenge to ensure stable and accurate solutions using any 
kind of deterministic methods. These arguments hold true 
for SIMMER-IV code,8) which is the direct extension of 
SIMMER-III to a 3-dimensional version. Considering all, 
the Monte Carlo method was selected as the scheme. It is 
worth noting that the extension of the present method to the 
continuous-energy Monte Carlo method, which can exactly 
treat the self-shielding effect of heavy nuclides, is extremely 
easy except the computation time issue. 

In the solver, time dependence of the flux is represented 
by a multiplication of an amplitude function and a shape 
function using the quasi-static approximation9) as is done in 
the precedent codes. The GMVP code,10) which was devel-
oped by JAEA, is used for evaluation of the reactivity and 
shape function at each time step. The code, however, does 
not have the function of solving the ‘α -mode’ problem11) 
which is necessary to treat the approximation, but of solving 
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the ‘k-mode’ problem11) and an external source problem. In 
order to avoid a laborious effort to modify the code itself, a 
new simple method is proposed to treat theα -mode problem 
using only obtainable results from the present code. In the 
paper, the detailed procedure of the method is explained and 
its applicability to the relevant problems is discussed.  

 
II. Numerical Methods 
1. The α -Mode Calculation 

Cullen et al. made an extensive study on dynamic critical-
ity including numerical experiments with Monte Carlo 
method.11) In the paper, he concluded that 1) dynamic and 
alpha static (α -mode) criticality calculations are identical, 
and 2) The k static (k-mode) method is generally only accu-
rate for systems that are close to critical.  

The dynamic criticality calculation solves the following 
equation  
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where 
( ):, EΩψ        angular flux, 
( ):, ES Ω         external source, 
( ):Eχ          fission spectrum, 
( ):EtΣ          total cross section, 

( ):EfΣν         production cross section, 

( ):,, EEs ′ ′Ω →ΩΣ   scattering cross section, 
:              neutron speed. v

 
The k-mode equation is obtained by setting 0=∂∂ tψ and 
( ) 0, =Ω ES , and introducing a new parameter k such as  
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As is mentioned in Ref. 11), there is no simple relation-
ship between the k-mode equation and the non-critical 
problem that we are interested in. 

In contrast, the α -mode equation is obtained by intro-
ducing such a parameter α  that the relation αψψ =∂∂ t  
holds. The equation has two different forms according to the 
state of criticality: 
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for super-critical state ( 0>α ), and 
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for sub-critical state ( 0<α ). 
Eqs. (3a) and (3b) can be regarded as modified external 

source calculations with a pseudo absorption or an additional 
source ( )Ev ,Ω•± ψα .  

Note also that for critical state ( 0=α ), they are identical 
to the k-mode equation Eq. (2) having k=1. 

As the state of criticality is indispensible in theα -mode 
calculation, we assume the k-mode calculation is completed 
and available as initial guess for the final solution of Eq. (3a) 
or (3b). 

In super-critical state, for example, we solve the following 
equation instead of Eq. (3a) in order that neutron balance be 
maintained with an arbitrary value of α  
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where the source term can be neglected. 
Our interest now is the strategy to find an α  that makes 

theλ  as close to unity as possible making use of the k-mode 
solution.  

 
2. Derivation of Newton-Method-Based Formula 

The k-mode equation can be rewritten in more simplified 
form with kernel matrices A  and F  as 

,φλφ FA =  (4) 

where 
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then Eq. (1) gives rise to the infinite system of equations 
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where { }•diag  denotes diagonal matrix. 
Equations (7)-(9) have the form of the Fredholm’s inte-

gral equation of the second kind. We should note that the 
variational approach using Eqs. (5) is not practical. It in-
volves direct solution of Eqs. (7)-(9) of which convergence 
of the Neumann expansion is extremely slow because the 
norm 1−FA  is close to unity in most cases.  

Instead, we use the adjoint approach. Let us write the ad-
joint equation of Eq. (6) as 

.)0(
++++ = φλφ FA  (10) 

For any vector x, the following relation holds 

( ) ( ) .0,0,, )0()0( ==−=− ++++ xxFAxFA φλλφ  (11) 

where • denotes integration over space, energy. 
Multiplying from left and integrating Eq. (6), we ob-

tain 

+φ

(3c) 
,,, )0()0()0( φφφφλ FA ++=  (12) 

which is the definition of k-mode eigenvalue. The same pro-
cedure to Eq.(7) gives rise to 
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Then, the first order perturbation on eigenvalue is ob-
tained as 
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Then, the second order perturbation is obtained. 

{ }[ ] )0()1()1()1(
1

)2( ,,, φφφφλφ FFvdiag ++−+ −φλ =  (14) 



Implementation of Transient Neutron Transport Solver in ASTERIA-FBR 255

VOL. 2, OCTOBER 2011

 

α

λ

αMAX

αMAX/2α0 = 0

,
1

1
n

nn

nn
n λ

λλ
ααα Δ

−
−

=Δ
−

−

{ } λ
φφ

φφ
Δ=

−+

+

1,

,

vdiag

F
Δα

Δα

α

λ

Δλ

Fig. 2 The Quasi-Newton-method-based procedure  Fig. 1 The Newton-method-based procedure 

As )1(λ corresponds to the gradient of the tangential line 
on the λα − curve, guess of α  that gives 1→λ is ob-
tained using the Newton method (Fig. 1). The procedure is 
described as follows 

,1 nnn ααα Δ+= −
 (15a) 

{ } ,,, 1
nnnnnn vdiagF λφφφφα Δ=Δ −++  (15b) 

.1)0(0 −=Δ λλ  (15c) 

-0.2

0.0

0.2

 
3. Improved Quasi-Newton Method 

The Newton-method-based procedure requires renewed 
adjoint flux at each trial. In order to save calculation time, an 
alternative “adjoint-free” method is introduced. If the αλ −  
curve is amply smooth, the gradient of a particular point on 
the curve is well approximated by the gradient of the two 
adjacent points located at the same distance, but in opposite 
direction, from the point. This assumption gives rise to the 
following “adjoint-free” procedure 
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Hereafter, we call this the Quasi-Newton-method-based 
procedure (Fig. 2). 

Equation (16c) has a drawback that both the denominator 
and numerator approach to zero for a large n. Thus an addi-
tional care must be taken to avoid the numerical instability, 
such as cutoff of the procedure when n reaches to a maxi-
mum criterion. 

 
4. Sample Calculations 
(1) Toy Problems 

In order to compare the performance of the above two 
methods, the following analytical functions were selected to 
represent the λα − curves:  

( ) ( ) ,311 1 nn
nf

−+ −−==− ααλ  (17) 

where  .4,..,1=n
Equation (17) is a series of concave curves whose com-

mon solution is 32=α , and the change in its gradient is 

es larg
f convergence perform-

steeper as n becom er (Fig. 3). 
Figure 4 shows the comparison o

ance of the two methods. As the Newton method requires the 
adjoint calculation at each trial, the required computation 
time was assumed as double as the quasi-Newton method. 
The Newton method reveals quick convergence as the trial 
proceeds, which is known as “super-linear convergence”. In 
contrast, the convergence of the quasi-Newton method is 
almost linear. The Newton method overwhelms the qua-
si-Newton method when the λα −  curves is nearly linear 
(Fig. 4(a)), while the latter ma more suitable when it is 
not the case(Fig. 4(b)). It may worth noting that the required 
precision of the solution is limited to few digits in actual 
Monte Carlo calculations due to statistical errors, as will be 
seen later. Taking all into consideration, we concluded that 
the quasi-Newton method is superior. 
(2) Monte Carlo Problem 

y be 

od was applied to a small test 
pr

The quasi-Newton meth
oblem which models a prototype fast reactor. A 70-group 

cross section set was used in the calculation to compare the 
difference in neutron spectrum between the two modes.  

The k-mode eigenvalue was 1.0635 and the final α  was 
2.29 510× starting iterations from the initial value 0=α . 

Figure 5 shows the convergence performance of 
theα parameter. A smooth convergence was observed in the 
firs four iterations, then it stagnated thereafter while oscil-
lating with alternate signs. This phenomenon can be 
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Fig. 3 Analytical functions used in the toy problems  
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attributed to statistical error in the Monte Carlo calculation. 
In the figure, “one-sigma” error in λ  is plotted for com-
parison. The magnitude of the oscillation is somewhat larger 
than the statistical error alone, which is explainable by the 
numerical instability due to truncation of the denominator 
and numerator of Eq. (16c). 

The comparison of the k-mode and α -mode solutions is 
pl is

ulated 
fro

otted in Fig. 6. In spite of the unreal tically large super-
critical condition, which is about 20 dollars in reactivity 
excess, the difference in neutron spectrum is modest.  

Figure 7 describes the difference in power calc
m the two mode fluxes. A large difference is seen in an 

energy range 1-100 keV, which overlaps that of Doppler 
effect. The substitution ofα -mode flux by k-mode leads to 
an overestimation of Doppler effect in any super critical 
condition. In the figure, statistical error, which is trivial 
compared to the difference expect energy range over 1 MeV, 
is also shown.  
 
III. Overall Implementation 

ule of ASTERIA-FBR is 
co

The neutronic calculation mod
mposed of the main solver and several subprograms which 

provide the solvers with necessary updated information. The 
whole structure is shown in Fig. 8. The reactivity and the 

shape function are calculated with GMVP, and the reactivity 
is transferred to APK code, which executes the calculation of 
the amplitude function at each time step. 

One of the most competent features of the present code is 
that time-dependent dynamic parameters are treated pre-
cisely by taking into account the displacement of delayed 
neutron precursors contained in core debris during a core 
disruptive process. This feature enables us to make more 
realistic modeling of gaseous and volatile precursors, which 
occupy over 80% in delayed neutron fraction. 
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Table 1 Comparison of computer resource requirements* 

 

The calculation time required in Monte Carlo is strongly 
de

hape of the tallies available 
in

V. Conclusions 

ethods to perform transient calculation 
ba

pendent on shapes of tallies as well as their total numbers. 
Figure 9 describes two options for modeling a hexagonal 
subassembly. The Hexagonal 2x2 model is more favorable 
from the viewpoint of preservation of original geometry, 
while the requirement for both memory and calculation time 
becomes significant (Table 1).  

This may be attributed to the s
 the code. As for GMVP, direct use of a trapezoidal tally is 

not allowed, so we have to use the combination of a rectan-
gular tally and a surface tally to define the equivalent shape. 
This procedure requires much more computation task than a 
single tally does because the code has to check if a oncoming 
particle fulfills the condition specified by each tally at the 
same time. As far as GMVP is used in the system, the Rec-
tangular 2x2 model seems to be more realistic choice at 
present. 
 
I

The numerical m
sed on the α -mode with Monte Carlo code were ex-

plained. The two methods to search α , a 
Newton-method-based method and an impro qua-
si-Newton method were newly developed and the latter was 
selected from the comparison of numerical test results. 

It was shown that the k-mode flux spectrum is softer

ved 

 than 
tha

Hexagonal 2x2 Rectangular 2x2
No. of axial partitions 

t of α -mode in any supercritical condition, which leads 
to overestimation of Doppler effect when k-mode flux was 
used as approximation. 

As for practical issues, a significant difference was ob-
se

the neutronic calcu-
lat

eferences 

T. Ishizu, T. Yamamoto, I. Tatewaki, T. Nakajima, N. 

2) ., “SIMMER-III : An advanced computer pro-

3) 
eu-

5) s fi-

6) s in discoutinuous fi-

7) ., A New SIMMER-III version with improved 

8) ensional computer 

9) euhold, Nuclear Reactor Dynamics, ANS, 

10) P/GMVP: General Purpose 

1) hey 

rved in computer resource requirement between the regular 
and irregular arrangement of the tallies. 

The fundamental implementation of 
ion module was completed, and application to full scale 

calculations is now in progress. 
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Fig. 9 Two options for modeling a subassembly 
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