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FORTEC-3D code, which solves the drift-kinetic equation for torus plasmas and radial electric field using theδf

Monte Carlo method, has developed to study the variety of issues relating to neoclassical transport phenomena in
magnetic confinement plasmas. Here the numerical techniques used in FORTEC-3D are briefly reviewed, and recent
progress in the simulation method to simulate GAM oscillation is also explained. A band-limited white noise term
is introduced in the equation of time evolution of radial electric field to excite GAM oscillation, which enables us to
analyze GAM frequency with fine resolution even in the case the collisionless GAM damping is fast.
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I. Introduction

Neoclassical transport theory1,2) treats transport phenom-
ena of plasmas in toroidal magnetic field configurations,
which are governed by guiding-center motion and Coulomb
collisions of charged particles. In torus plasmas, particles of
which velocity pitch|v∥/v| is small are trapped in a region
where magnetic field strength is weak, and those trapped par-
ticles mainly contribute the radial particle and heat transport.
The plasma distribution function tends to deviate from local
Maxwellian fM as the magnetic field is non-uniform and as
the plasma collisionality is low. Then precise information of
plasma distribution in the phase space is required to evaluate
the transport. In neoclassical transport theory, the time evolu-
tion of plasma distribution function is described by the drift-
kinetic equation (DKE), which describes time evolution of
gyro-averaged distribution function in five-dimensional phase
space(x, v∥, v⊥).

From the early researches, DKE has been solved ana-
lytically or by computers adopting several approximations
and simplifications, some of which are not always proper
to simulate realistic cases in high-performance burning plas-
mas in forthcoming ITER experiments,3) for example. Recent
progress in computation environment enables us to solve DKE
directly and to evaluate transport coefficients more correctly.
We have developed FORTEC-3D code4–7) which is applicable
to general 3-dimensional magnetic field like helical config-
urations of Large Helical Device (LHD) in NIFS.8) It treats
self-consistent evolution of radial electric field and the finite-
orbit-width (FOW) effect of guiding-center motion, which are
usually neglected in conventional methods. FORTEC-3D has
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been utilized to calculate transport coefficients in LHD plas-
mas with including radial electric field, and it is found that the
non-local effect alters the equilibrium electric field profile. Its
wide applicability is also being demonstrated in researches of
recently concerned topics such as the geodesic acoustic mode
(GAM) of electric field oscillation and Landau damping of
it,5,7) and simulation study of neoclassical toroidal viscosity
in tokamaks with weak perturbation magnetic field.9)

In this paper, first we briefly review the numerical method
of theδf Monte Carlo method, which solves the DKE for de-
viation of distribution function from local Maxwellian,δf =
f − fM . The conserved-form Monte Carlo collision operator
and implementation of a parallelized pseudo-random numbers
generator (PRNG) used in it are also explained. Then recent
progress in the simulation method is shown about the exci-
tation of GAM by introducing a band-limited white noise in
the time evolution of the radial electric field. It enables us to
analyze GAM frequency spectrum in LHD plasma, of which
GAM damping is strong, by carrying out a long-duration
GAM oscillation simulation with the excitation scheme.

II. The δf Monte Carlo Method

FORTEC-3D solves the drift-kinetic equation for perturbed
distribution functionδf = f − fM ,

D

Dt
δf ≡ ∂

∂t
δf +

(
v∥ + vd

)
· ∇δf + K̇∂δf

∂K
− CT (δf)

= −
(
vd · ∇ + K̇ ∂

∂K

)
fM + PfM . (1)

wherefM is a time-independent local Maxwellian which has
constant densityn and temperatureT on a flux surface,vd ≡
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ẋ − v∥b is the drift velocity,b is the unit vector along the
magnetic field line, and the independent velocity variables are
chosen here asK = mv2/2 andµ = mv2

⊥/(2B). FORTEC-
3D adopts the Boozer magnetic coordinates10) (ψ, θ, ζ), which
is the toroidal magnetic flux within a flux surface, poloidal an-
gle, and toroidal angle, respectively. The effective minor ra-
diusr = a

√
ψ/ψedge is also used as a flux-surface variable,

wherea =
√

2ψedge/B0, ψedge is the value ofψ at the outer-
most flux surface, andB0 is the magnetic field strength at the
magntic axis (r = 0). Magnetic field in Boozer coordinates is
given by

B = ∇ψ ×∇θ + ι∇ζ ×∇ψ = G∇ζ + I∇θ + β∗∇ψ, (2)

whereG(ψ) andI(ψ) are the poloidal and toroidal current,
andι(ψ) is the rotational transform of the field line, respec-
tively. The Jacobian of Boozer coordinates is

√
gB = (G +

ιI)/B2. We assume that only electrostatic radial electric field
E = −(dΦ/dψ)∇ψ = Eψ∇ψ exists and the magnetic field
is steady in time. Note thatΦ is allowed to be time-dependent.

To solve Eq. (1), FORTEC-3D adopts the two-weight
scheme of δf Monte Carlo method.11,12) Each simula-
tion maker, of which distribution function is written as
g(x, v∥, v⊥), has two weights which are defined so as to sat-
isfy the relationswg = δf andpg = fM , respectively. Since
each marker moves according to the l.h.s. of Eq. (1), or
Dg/Dt = 0, time evolution of marker weights are given by

ẇ = − p

fM

[
vd · ∇ + K̇ ∂

∂K
− P

]
fM , (3a)

ṗ =
p

fM

[
vd · ∇ + K̇ ∂

∂K

]
fM . (3b)

The linearized Fokker-Planck-Landau collision operator
(for like-particle collisions) is decomposed into the test-
particle operatorCT and the field-particle operatorPfM . The
former is implemented in a Monte Carlo way by a random
walk of simulation marker velocity in the(v∥, v⊥) space.13)

The latter is defined so that the collision operator satisfies the
following relations∫

d3vM (CT (f) + PfM ) = 0
for M = {1, v∥, v

2}, (4a)

CT (f) + PfM = 0 for δf = (c0 + c1v∥ + c2v
2)fM ,

ci ∈ R, (4b)

which describes the conservation property and the null-space
of the linearized operator, respectively. The accuracy of the
conservation property has improved recently by introducing
new numerical scheme forPfM operator.6)

The time evolution of the radial electric field on each flux
surface is given from the time derivative of Poisson’s equation
in Boozer coordinates as follows:

ϵ0

⟨
|∇ψ|2

(
1 +

c2

v2
A

)⟩
ψ

∂

∂t
Eψ(ψ, t) = −

∑
a

eaΓD
a , (5)

where⟨· · ·⟩ denotes a flux-surface average defined as

⟨A⟩ψ ≡
∮

dθdζ
√

gBA(ψ, θ, ζ)∮
dθdζ

√
gB

,

vA = ϵ0cB/(mini)1/2 is the Alfvén velocity, and the sub-
scripta specifies the particle species. The radial particle and
heat fluxes are evaluated from the guiding-center radial drift
velocity as follows:

ΓD
a (ψ, t) =

⟨∫
d3vδfavd · ∇ψ

⟩
ψ

. (6a)

QD
a (ψ, t) =

⟨∫
d3v

ma

2
v2δfavd · ∇ψ

⟩
ψ

. (6b)

In neoclassical transport simulations for LHD plasmas, deter-
mination of the ambipolar electric field profile, which evolves
so that

∑
a eaΓD

a = 0 is satisfied on each flux surface, is one
of the main tasks sinceΓD

a andQD
a in non-axisymmetric plas-

mas are strongly affected byE × B rotation speed. In or-
der to reduce the computation time, FORTEC-3D only solves
ion neoclassical transport, and another code GSRAKE14) is
used to evaluateΓD

e , which solves a bounce-averaged ap-
proximated DKE for helical configurations. In solving DKE
for ions, FORTEC-3D neglects the ion-electron collisions be-
causeme/mi ≪ 1.

We have applied this method so far, because the finite-
orbit-width effect and the strict conservation property of like-
particle collision term, which are the merit of FORTEC-3D,
are considered to be more important for ion transport analysis
than that for electron, because of the large mass difference.
In the recent LHD experiments, however, core electron tem-
perature becomes very high inCore Electron-Root Confine-
ment(CERC) plasmas,15) and positive ambipolar radial elec-
tric field is considered to play an important role to achieve
good electron confinement. Since the Te gradient in CERC is
very steep and trapped electrons in such high-Te plasmas is
insensitive to Coulomb collisions and can drift widely in ra-
dial direction, it is concerned that the FOW effect on electron
neoclassical transport in CERC plasmas would not be negligi-
ble. To simulate neoclassical transport and ambipolar electric
field in CERC plasmas, FORTEC-3D is being extended for
electron transport simulations. For that purpose, the unlike-
particle (electron-ion) collisions operator as well as the like-
particle ones is included. From benchmarks of the code,16)

it is found that the radial electron particle and heat fluxes in
high-Te LHD plasma are largely different from those evalu-
ated from conventional neoclassical calculations especially if
the E × B rotation is weak, which suggests the importance
of precise calculation method of neoclassical transport in an-
alyzing high-Te core plasmas.

FORTEC-3D is written in Fortran90 and parallelized by
using MPI. In the parallelization of a massive Monte Carlo
code, pseudo-random number generator (PRNG) may be a
bottle neck. In a typical simulation run, FORTEC-3D uses
about1 ∼ 4 × 107 markers and calculates about104 ∼ 105

times collisions, which requires a fast, long period, and sta-
tistically good quality PRNG. We have adopted a parallel
PRNG according to Mersenne twister17) with the dynamic cre-
ation method,18) which generates independent random num-
ber sequences on each MPI process. FORTEC-3D is usu-
ally executed using 64 to 256 MPI processes with 8 paral-
lel threads on shared memory, and the time cost of PRNG is
less than 1% of the total simulation time. The parallel PRNG
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has passed a statistical independency test.19) The Mersenne
twister in FORTEC-3D can manage up to 1,024 MPI parallel
computation now, though increase of communication time of
MPI_REDUCE-type operations which are required in solving
PfM operator and Eq. (6) becomes bottle neck as the number
of MPI processes increases.

III. Excitation of GAM Using White-Noise

Zonal flows and the geodesic acoustic mode (GAM) oscil-
lation in toroidal plasmas have been investigated recently, as
the zonal flow suppresses micro instabilities and anomalous
transport.20) Cross-device investigation21) has revealed both
similarities and differences in the nature of GAMs among sev-
eral devices. One possibility to explain it is the magnetic field
structure. Theoretical studies on GAMs in non-axisymmetric
magnetic field based on the gyrokinetic model by Sugama and
Watanabe22) have shown that the GAM frequency and damp-
ing rate depend on the magnetic field spectrum, and the col-
lisionless damping of GAM oscillation in helical plasma is
faster than that in a comparable scale tokamaks. To verify
the analytic expectation of GAM in LHD magnetic configu-
rations, we have carried out a simulation study of the depen-
dence of GAM frequency and damping rate using FORTEC-
3D.5) It has been shown there that GAM frequencyωG is
lower and the collisionless damping rate of GAMγG is higher
when the magnetic axis position of LHD is shifted inward. We
have also shown there that the DKE simulation of FORTEC-
3D corresponds to theTe/Ti → 0 limit of the gyrokinetic the-
ory. Since executing global simulations of GAM in realistic
configurations in a gyrokinetic model is time-consuming, re-
searching GAM using a DKE model is considered as a useful
tool. The reliability of FORTEC-3D for GAM simulation has
been proved by a benchmark7) with full-f gyrokinetic Vlasov
code GT5D.23)

In the previous study, however, we have used MHD equi-
librium magnetic field of LHD with the rotational transform
profile ι is fixed to a low value in surveying the GAM de-
pendence on the magnetic axis position,ι = 0.35 to 0.5 at
r = 0 ∼ 0.8, since the GAM damping rate is roughly propor-
tional to ι, and strong Landau damping occurs whenι ≃ 1.
In LHD experiments theι profile is determined by the internal
plasma current profile and magnetic axis position, usually in-
creasing with minor radius. However, even ifι ≪ 1, the heli-
cal magnetic perturbations in LHD also causes rapid damping
of GAM. Because of the strong GAM damping, it is difficult
to analyze the frequency spectrum precisely from simulation
result, since in evaluating GAM frequency by power-spectrum
analyze, long-duration data ofΓD(ψ, t) andEψ(ψ, t) are re-
quired to obtain a fine resolution in frequency. In the DKE
model, however, there is basically no driving force of GAM,
and the initial GAM in the simulation is excited just because
the initial conditionδf = Eψ = 0 is not an equilibrium state
of toroidal plasma.

To resolve this problem, we devised a new technique of ex-
citing GAM in DKE simulation. A white-noise term is intro-
duced in the equation of time evolution ofEr on a flux surface,
which is described here as a stochastic differential equation as

follows:

dEr(r, t) = − e

ϵ0ϵ⊥

(
ZiΓD

i (r, t) − ΓD
e (r, t)

)
dt

+σE(r)dW (r, t), (7)

where the radial coordinate is transformed fromψ to r for sim-
plicity, and the "diffusion coefficient" of radial electric field
σE is considered as a very small factor. Equation (7) can be
regarded as a random-walk of radial electric field around an
ambipolar state which mimics the effect of any turbulence on
electrostatic potential in plasma. Concerning the noise term, a
band-limited white-noise, of which frequency range contains
the GAM frequencyωl < ωG < ωu, is adopted :

dW (r, t) =

√
2dt

N

N∑
k=1

cos[ωkt + ϕk(r)], (8)

whereN is sufficiently large number (≫ 100), ωk = ωl+(k−
1/2)∆ω, k = {1, 2, · · · , N}, ∆ω = ωu − ωl, and the phase
ϕk(r) are random numbers in[0, 2π) given independently on
each radial simulation mesh. Since the ambipolar electric field
is O(Ti/(ea)) and ωG ∼ vti/R0 wherevti is ion thermal
velocity andR0 is the major radius, the diffusion coefficient
σE is given by

σ2
E(r) = δ2

(
Ti(r)
ea

)2
vti(r)
R0

, (9)

with a control parameterδ ≪ 1. Band-limited white noise
is used so that GAM oscillation can be excited efficiently by
small noise amplitude without bringing very high and low fre-
quency components which are irrelevant to GAM excitation
into the simulation. The idea of application of white noise is
borrowed from the numerical method used in the researches of
seismic resistant and structural analyses of buildings.24) Since
white-noise consists of continuum spectra, one can simulate
the response of a structure to general earthquakes, without
knowing details of the spectrum of "real" earthquake wave
nor the eigenfrequncies of the structure. Similarly, though the
physical driving mechanism of zonal flows and GAMs is re-
garded as nonlinear couplings of micro instabilities, which is
beyond the drift-kinetic approach, we can still study the be-
havior of excited GAM with DKE by using white-noise in-
stead of unknown driving term.

Numerically, Eq. (7) is solved by the Euler method, while
marker motion and weight evolution are solved by the 4-th or-
der Runge-Kutta method. To suppress the discretization error
in time evolution, the time step sizedt is chosen small enough,
ωGdt, ωudt ≪ 10−2. We have checked the simulation results
(frequency and amplitude of excited GAM) are not affected by
the choice ofdt andN in Eq. (8) by varying these parameters.

To demonstrate the numerical scheme, we carried out sev-
eral simulations in a LHD magnetic field configuration (R0 =
3.75 m , B0 = 1.5 T, without plasma current) obtained from
a MHD equilibrium calculation code VMEC.25) FORTEC-3D
adopts a Fourier series expression of magnetic field spectra as
shown in Ref. 5). We used 22 components ofBm,n spectra
in the present study. Core ion density and temperature are
ni0 = 2.0 × 1018 m−3 and Ti0 = 1.0 keV, respectively.
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Fig. 1 Time evolution of radial electric fieldEr in GAM ex-
citation simulations observed atr/a = 0.21 surface. The
time is normalized by the ion collision timeτi. The am-
plitude of the white-noiseδ is varied 0.00, 0.01, and 0.03
in these simulations. The noise parts are plotted at the off-
center position in the graph with magnified by 200.

The ι profile is monotonically increasing,ι(r = 0) = 0.34,
ι(0.56a) = 0.50, and ι(a) = 1.2. The collisionality with
these parameters was very low, and then the effect of colli-
sions on GAM damping is negligible. The plasma configura-
tion is made similar to a LHD experiment with observation of
GAM.26,27)

The time evolution of the radial electric field and particle
flux in the simulations are shown inFigs. 1and2, where three
cases (δ = 0.00 (without noise), 0.01, and 0.03) are plotted.
In Fig. 1, the given noise portions inδ =0.01 and 0.03 cases
are also plotted. Note that the noise amplitude is very small
compared to the totalEr, then they are magnified by 200 in the
figure. The GAM frequencyωG is approximately estimated as

ωG0 =
√

7/4(vti/R0)(1 + 46/49q2)1/2 (10)

in the Te/Ti → 0 limit of simple axisymmetric tokamak
configuration. In the present cases, it ranges about26 kHz
(r = 0) > ωG0/(2π) > 17 kHz(r = a). Therefore,
the band-limited white noise was given in the range from
ωl/(2π) = 10 kHz to ωu/(2π) = 36 kHz. In Figs. 1 and
2, one can see that GAM was successfully excited continu-
ously in time with very small amplitude of white noise. Com-
paring the amplitude of the noise partẼr and the totalEr,
the ratio is about|Ẽr/Er| ∼ 1/100, and excited GAM am-
plitude is roughly proportional toσE . On the other hand, if
the white noise was turned off, initial GAM oscillation disap-
peared soon because of the strong Landau damping of GAM
in helical configurations, and only a small fluctuation from
Monte Carlo noise remained.

From the data of continuous wave form of GAM in particle
flux ΓD

i (r, t) and radial electric fieldEr(r, t), we can analyze
the GAM frequency by taking the power spectrum of them
as it is shown inFigs. 3(a), (b) and (c). Forδ = 0.01 case,
the peak of the spectrum appears slightly below the estimation
ωG0, which is an approximation by neglecting the helicity of
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Fig. 2 Time evolution of radial particle fluxΓi in GAM ex-
citation simulations observed atr/a = 0.21 surface. The
amplitude of the white-noiseδ is varied 0.00, 0.01, and 0.03
in these simulations.

LHD magnetic field. The band-limited white noise has uni-
form power spectrum in the range fromωl to ωu as shwon
in Fig. 3(c). On the other hand, we cannot see clear peak
of power spectrum if the white noise is cut as in Fig. 3(a).
Though we do not show the power spectrum ofΓD

i , it has al-
most the same profile as that ofEr. The radial position where
clear peak of GAM oscillation isr/a = 0.05 ∼ 0.20, which
seems consistent with the observation of GAM using Heavy-
Ion-Beam-Probe (HIBP) in a LHD experiment,27) of which
profile is similar to the one in the simulation. We have also
confirmed that the GAM frequency and the peak radial posi-
tion of GAM in simulation are almost unaffected by varying
the white-noise amplitude fromδ=0.01 to 0.03.

Next, the peak frequencies and peak amplitudes of the
power spectrum ofΓD

i andEr are compared with the gyroki-
netic theory,22) which takes into account of the helical mag-
netic ripples of LHD configurations. Analytic solutions of
ωG and γG for the gyrokinetic analysis in theTe/Ti → 0
drift-kinetic limit is shown in Eqs. (7) and (8) in Ref. 5).Fig-
ure 4(a) shows the radial profile of GAM frequency. Note
thatωG0 is an approximate estimation of GAM frequency in a
tokamak geometry. Both gyrokinetic analysis and FORTEC-
3D simulation show lowerωG thanωG0, which is the effect of
helical configuration of LHD magnetic field. The radial pro-
file of the peak of power spectrum amplitudes ofΓD

i andEr

are plotted in Fig. 4(b). The peak of amplitude is located at
r/a ≃ 0.125, and the amplitudes decay at outboard region.
It was diffucult to find a clear peak in power spectrum and
identify ωG from simulation results atr/a > 0.35. It is be-
cause bothι and the helical ripple components of magnetic
field spectrum are increasing function ofr in the LHD config-
uration used here, which results in the larger damping rate of
GAM, |γG|. One can see that the peak amplitudes observed
in FORTEC-3D simulation tend to be proportional to|1/γG|,
which means that the GAM excited by the white noise actu-
ally damps according to the kinetic mechanism that gyroki-
netic theory explains. Recent analysis of LHD experiment has
found that the spacial profile of GAM power shows the sim-
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Fig. 3 Contour plots of the power spectrum ofEr for (a):
δ = 0.00 and (b):δ = 0.01 case, respectively, and (c): the
power spectrum of the white-noise part forδ = 0.01 case.
Green line represents an approximate estimation of GAM
frequency for tokamak case, Eq. (10). Note that the scale
of the color contour is different among these figures.

ilar tendency as Fig. 4(b).27) This is simply explained using
a model of forced vibration of an oscillator of which natural
frequency isω0,

mẍ + γω0ẋ + ω2
0x = f(t), (11)

whereγ is the damping rate. If the driving forcef(t) is white-
noise of which power spectral density isS(ω) = S0, the varia-
tion of the displacementσ2

x = E[x2(t)] is known to be propor-
tional toS0/(γω3

0),24) whereE[g] means the expected value
of g. Note here thatσ2

E ∝ S0 in Eq. (7). Though Eq. (11) is
a simple model of GAM damping by neglecting radial corre-
lations, it explains thatE[|Er − Er|2] ∝ |γG|−1. We could
have seen GAM atr/a > 0.35 if the driving term had been
much stronger, however, the coincidence of the radial profile
of the GAM power between simulations and observation im-
plies that the realistic choice of the GAM driving termδ is the
order of10−2. More investigation by comparing the GAM
oscillation amplitude between simulation and observation is
planned near future.

Finally, at the closest position to the magnetic axisr/a =
0.05, difference between simulation and theory is large. It
is possibly because of the FOW effect of passing particle or-
bit around the magnetic axis, of which radial drift width is
wide there (so called potato orbits), or because of the effect of
boundary conditionEr(r = 0) = 0 in the simulation. The gy-
rokinetic analysis do not assume the existence of potato orbits
nor the magnetic axis.

IV. Summary

We have developed a new simulation scheme to simulate
GAM in LHD plasmas, in which the GAM damping rate is
essentially high compared with that in tokamaks, by apply-
ing a band-limited white noise as a driving term of GAM os-
cillation in FORTEC-3D DKE Monte Carlo code. From the
test simulations in a LHD magnetic configuration it has been
demonstrated that the GAM oscillation can be excited by very
small amplitude of white noise, and the GAM frequency and
the peak amplitude of the power spectrum of GAM oscilla-
tion are consistent with a gyrokinetic analysis for helical plas-
mas. With the GAM excitation scheme FORTEC-3D simula-
tion is able to simulate GAM oscillation and damping in real-
istic LHD plasma profile and analyze GAM power spectrum
with fine resolution. LHD is equipped with HIBP which ob-
serves electrostatic potential profile in core plasma. GAM fre-
quency profile can be obtained from the diagnostics, and then
we can carry out precise comparisons among observation, gy-
rokinetic theory, and FORTEC-3D simulation, which will be
profitable for further understanding the physics of GAMs and
zonal flows in helical plasmas. Further improvement of the
simulation model is planned in near future to include the im-
purity heavy ion effect, which is one of the candidates that
change the observed GAM frequency from the analytic esti-
mation.
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vertical axis is normalized by an approximate estimation for
tokamak case, Eq. (10). (b): Comparisons of the peak am-
plitudes of power spectrum ofEr andΓD

i (symbols), and
the inverse of GAM damping rate1/|γG| from gyrokinetic
analysis (line). FORTEC-3D results forδ = 0.03 case are
used here.
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