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A source reconstruction capability driven by time-evolving data is tried out by coupling the observed data and 
predictive model through dynamic Bayesian inference to obtain solutions to inverse problem. Solutions are 
determined by posterior probability distributions describing unknown model parameters and the Markov Chain Monte 
Carlo method with the Metropolis-Hastings sampling algorithm is employed to obtain the solutions. The posterior 
distributions of model parameters are obtained by performing stochastic sampling by the likelihood function test 
indicating the agreements between the measurements and the predictions from Gaussian plume model. The 
Yonggwang atmospheric tracer experiment in Korea is selected to testify the source reconstruction algorithm. The 
simulation has shown that the posterior modes of the release point and the released source rate for this experiment 
obviously converged to their true values. 
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I. Introduction1

Atmospheric releases of hazardous material due to an 
accident at nuclear facility or a radiological attack can affect 
large populations, and cause significant damage to human 
health and the environment. Reliable predictions of air 
concentration are extremely valuable in guiding an effective 
and timely response.  

However, all of the model parameters are not necessarily 
known well in certain cases particularly in emergency 
situations where severe time constraints are imposed. Instead, 
the results of dispersion, for examples air concentrations at 
certain locations on the site of interest, may be available 
from a monitoring network. A probabilistic source 
reconstruction model that couples field measurements with 
dispersion model predictions can be applied in order to 
evaluate the unknown model parameters characterizing the 
state of event. This process constitutes a backward model or 
an inverse model.  

In this study, inverse tracking of unknown model 
parameters characterizing atmospheric dispersion event has 
been tried out by coupling a time-dependent data stream with 
a predictive model in a manner that allows dynamic 
improvement in estimates of the parameters as the 
measurements become available. The inverse algorithm is 
based on dynamic Bayesian inference combined with a 
Markov Chain Monte Carlo (MCMC) method using the 
Metropolis-Hastings (M-H) sampling algorithm.1) The 
Yonggwang (YG) atmospheric tracer experiment performed 
in Korea is selected for the source reconstruction2) and 
unknown model parameters are assumed as the release point 
(x, y) and the released source rate (Q).
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II. Materials and Method 
1. Applying Bayes’ Theorem to Source Reconstruction 

Bayes’ theorem defines the posterior probability of a set 
of model parameters  given the measurements d from a 
sensor network.  

( / ) ( ) ( / )p p Ld d    (1) 

( / )p d  is the posterior distribution. ( )p  is the prior 
distribution and represents prior knowledge about the model 
parameters before obtaining the data. In this study, 
non-informative or uniform distribution is applied as prior 
ones for three model parameters. ( / )L d  is the likelihood 
function and models the agreements between the 
measurements and the predictions. The consideration for 
constructing the likelihood function is to reflect zero 
observations below its threshold value within the function 
framework. Therefore, the likelihood function accounting for 
zero sensor readings is written as Eq. (2).
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For a further review of this likelihood function, refer the 
following literature. 3)

A simple Gaussian plume model is applied as the forward 
one to predict Cm and this model for uniform steady wind 
conditions can be written as 
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where Q (g/s) is the released source rate, U (m/s) is the mean 
wind speed, H (m) is the release height, x is the distance 
along the wind, y is the distance along the horizontal 
crosswind direction and z is the distance along the vertical 
axis defining the sensor heights. y and z are called as the 
standard deviations in the horizontal crosswind and vertical 
direction, respectively. These two standard deviations are 
defined empirically for different stability conditions and are 
presented as Eq. (4).
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The values of the constants ai, bi and ci have been given by 
Brodsky. 4)

The approximate solutions of Eq. (1) can be obtained by 
MCMC simulation based on the M-H sampling algorithm. In 
this algorithm, a candidate state  is sampled from a 
proposal distribution with probability of Eq. (5) at each 
iteration
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where, N is the total number of sensors and  is the current 
states of the interesting model parameters. For a further 
review of this algorithm, refer the following literature. 5,6)

For generating Markov chains, two sets of initial values 
are assumed as (5, 3, 22) and (1, -3, 20), where they 
correspond to (x, y, Q). The simulations of 5000 by each 
time-evolving stage are applied for source reconstruction and 
total simulations are then to be 15000. Additionally, the first 
half simulations 7500 are assumed as the burn-in for 
deriving the more reliable target distributions for interesting 
model parameters and they are discarded for the source 
reconstruction. 

2. Yonggwang Atmospheric Tracer Experiment 
The part of the measurements, which has been obtained 

through the experiments performed in the YG nuclear power 
reactor site of Korea in May 29, 1996, is used for the source 
reconstruction. The weather conditions have been measured 
in five points around nuclear power reactor, and data of wind 
direction, stability class and wind speed determined as 48 
consecutive ten-min averaged values. The stability class is to 
be B, and the wind direction and the wind speed are to be 
242 deg and 4.9 m/s, respectively. The wind direction means 
to increase toward clockwise direction on the north of the  

(a) First time stage 

(b) Second time stage 

(c) Third time stage 
Fig. 1 Yonggwang atmospheric tracer experiment. Clear indications 

and a star one represent zero concentrations and true release 
point, respectively. 

release point. The release point and the release height are to 
be the origin and 58 m, respectively, and SF6 gas has been 
released as the constant rate of 32 g/s from 15:00 to 16:30. 
For measuring tracer concentrations, 91 sensors have been 
located in 2 to 8 km from the release point, and six 10-min 
averaged concentrations recorded. In this study, the first 
three 10-min averaged measurements are used for source 
reconstruction as summarized in Fig. 1.

III. Results and Discussion
1. Posterior Distributions 

A program for source reconstruction is written by using 
C++ language. According to dynamic Bayesian inference, 
note that simulations should be consecutively performed by 
considering the data measured in each time stage. That is, the 
first source reconstruction is performed by applying the first 
measurements, and the second source reconstruction is then 
performed by applying the second measurements and the 
posterior results obtained from the first source reconstruction, 
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and so on. 
The bimodal posterior distribution for the release point 

has been depicted by each time-evolving stage in Fig. 2.
Clear circles mean the true values of the release point. The 
ranges of x and y axes of the release point are decreased with 
approach to the third time-evolving stage, and their 
uncertainties have been then considerably removed through 
dynamic Bayesian inference. The true value of the release 
point satisfies within 11%ile contour line of the histograms 
in detail and has approximated to the bimodal posterior 
modes regardless of time-evolving stage. 

The posterior distribution for the released source rate has 
been depicted in Fig. 3 as well. The range and uncertainty of 

(a) First time-evolving stage 

(b) Second time-evolving stage 

(c) Third time-evolving stage 
Fig. 2 Bimodal posterior distributions of the release point 

the posterior distributions are decreased with approach to the 
third time-evolving stage. Its posterior modes are obviously 
accorded with 32 g/s for all time-evolving stages, and it is 
then possible to infer the true value of the released source 
rate. The unknown model parameters in atmospheric 
dispersion have been successfully tracked through source 
reconstruction tried out in this study. 

However,  defining the agreements between the 
measurements and the predictions in Eq. (2) has been turned 
out to be about 500 to 900%. There are several reasons for 
this mismatch between the predictions and the measurements 
for the source reconstruction in YG tracer experiment. First 
of all, the major reason for the mismatch between the two 
concentrations is that all measured concentrations are 
averaged values from a 10-min release, whereas model 
predictions are steady-state results. And, the differences  

(a) First time-evolving stage 

(b) Second time-evolving stage 

(c) Third time-evolving stage 
Fig. 3 Posterior distributions of the released source rate
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Fig. 4 Posterior trajectory of the release point

between the measurement and the predictions are not 
constant, because the measurements at the same sensor 
locations have been much varied by time stage. 

From these reasons, for inverse tracking unknown model 
parameters in the source reconstruction turned out to be 
remarkable differences of the measurements at same sensor 
locations, it may be preferably advantageous that only one 
source reconstruction is performed by applying the 
agreements between the average measurements for all time 
stages and the predictions without considering dynamic 
Bayesian inference. 

2. Posterior Trajectory for the released point 
The most important model parameter in atmospheric 

dispersion event may be the release point. The posterior 
trajectories contribute, therefore, to examining whether the 
true release point can be efficiently tracked independent of 
some starting points or not. Fig. 4 shows the posterior 
trajectories for the release points of the two Markov chains, 
and ensures that the release point clearly indicates the true 
value of (0, 0) km independent of starting points. 

Through examining these posterior distributions and the 
posterior trajectory of the release point, unknown model 
parameters have enough achieved their target distributions. 
The inverse tracking algorithm tried out in this study has 
been successful in reconstruction of unknown or uncertain 
source parameters. These results can contribute to a 
decision-making drawn for an emergency response under 
severe atmospheric dispersion conditions.

V. Conclusion 
A probabilistic inference for inverse tracking of model 

parameters for atmospheric dispersion, a set of measurement 
data is given, has been presented for application to 

characterization of the event. It combines dynamic Bayesian 
inference with Markov Chain Monte Carlo method based on 
the Metropolis-Hastings sampling algorithm. The 
probabilistic simulations have shown that the posterior 
distributions of the model parameters achieve their target 
distributions, and the source reconstruction is then successful 
by indicating the true release point within the bimodal 
posterior distributions. The posterior mode of the released 
source rate has also indicated the true value 32g/s. The 
uncertainty of posterior distribution has been successfully 
decreased to an insignificant level through dynamic 
Bayesian inference by three time stage. 

The probabilistic aspect of the solution optimally 
combines a likely answer with the uncertainties of the 
available data. Among several possible solutions, the 
Bayesian source reconstruction is solely able to find values 
of the model parameters that are more consistent with the 
data available and its uncertainties. The source 
reconstruction performed in this study would provide 
decision-makers with better information about the accident 
situations, soon after the first measurements were available. 
This would lead to timely and efficient response actions 
against the emergency situations. 
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