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Neutrinos commonly exist in nature as a kind of lepton, and are known to have a quite small mass. The main

purpose of this paper is to explain the generation of the self-mass of the neutrino through weak potential interaction.

Neutrinos are treated to be composed of four types of constituent particles, and interaction potentials are produced by

weak electric charge and weak electric dipole moment in Fermi gauge. The matrix properties of momentum introduce

an equivalent time velocity in the potential generation in some cases. This velocity creates neither electric nor magnetic

fields, and generates interaction energy with a scalar field B̂0. A formulation is given to define electromagnetic self-

energy of neutrino constituents. A calculation example is presented to explain the quite small self-mass of neutrino by

the self-field energy in the weak interaction.
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I. Introduction
Neutrinos commonly exist in nature as a kind of lepton.

In the past decade, some neutrino oscillation experiments1)

have indicated that neutrinos own a very small mass. The ex-

periment by our group2) suggested that existence of an exter-

nal scalar field B̂0 makes neutrino to be dissociated, which

may also be the evidence of the small mass of neutrino.

Electroweak theory,3, 4) which unified the electromagnetic and

weak interaction, explained the mass of field bosons success-

fully. However, such theory was not applied to the study of

neutrino structure. Until now, the neutrino structure and mass

generation were not made clear.

A previous work of our group5) gave a basic proposed

structure of neutrino in terms of the weak-charge and weak-

dipole moment interaction. It described the motions of neu-

trino and its constituent particles. The mass of the neutrino

was estimated without consideration of antisymmetrization of

wave functions, and mass values were too large to be accepted.

In this paper, following the previous work, we attempt to

explain the generation of the self-mass of the neutrino by re-

vised potential calculations with the antisymmetrization. The

self-mass is ascribed to the self-energy formed in the weak in-

teraction, with which the kinetic mass should agree. Method

of supplying the self-energy to neutrino should also be consis-

tent to the kinetic-mass formulation mechanism.

We follow the Fermi gauge to define a scalar auxiliary field

B̂0 which is useful to give a simple formulation of 4-vector po-

tentials by d’Alembertian. This field may play a certain role

in neutrino kinetic mass. The system having momentums of

γ0γμ and γ0γ5γμ matrices introduces reversed complex-type

momentums, which work as a momentum in an equivalent

time direction through the unit matrix equivalent to γ0γ0. We

treat that the equivalent time momentum, i.e. velocity, gen-

erates A0, and in turn, this field contributes to the self-mass

of constituent particles of neutrino. Differing from the pre-
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vious work, in this paper, the interaction-energy-density be-

tween the scalar field B̂0 and equivalent time velocity will be

excluded from the self-energy density in a form of Hamilto-

nian density.

II. Kinetic Mass, QQQ -QQQd Interaction, Subspace, and
Matrix Properties

A basic feature of assumptions6) is briefly explained. A

neutrino is assumed to consist of four types of constituent

particles, according to the number of basic gamma matrices

γν with ν=0∼3.7) It is postulated that the constituent particles

exist in either positive or negative mass states, i.e. sm
ν = ±1.

The kinetic mass mkin
ν of internal neutrino constituent ν is de-

fined as

mkin
ν = sm

ν

√
∑
μ

(
pμ,νV

)2 −∑
μ

(
pμ,νA

)2
, (1)

where pμ,νV and pμ,νA are momentums of particle ν of

vector(V)- and axial-vector(AV)-type motions in μ direction

where μ = 0 ∼ 3 indicates ct, x, y and z.

We postulate that constituent particles possess either weak-

Fig. 1 Magnetic field generated by particles with charge Q
and dipole moment Qd .6) The two particles are travel-

ing in the z-direction with a left-rotated spiral motion.
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Fig. 2 Kinetic motions of constituent particles of neutrino de-

scribed on common position of particle 1. The position

sharing facilitates the interaction in Fig. 1.

electric charge Q or weak-electric-dipole moment Qd . The

dipole moment Qd is assumed to have a relationship to the

charge: Qd=Qh̄/pν , where pν is the momentum of interest.

The magnetic fields between constituents particles are gener-

ated by Q - Qd pair, as illustrated in Fig. 1, where two par-

ticles having Q and Qd are moving in the z-direction with a

left-rotated spiral motion. From the figure, we can see that

both the magnetic fields generated by Q and Qd have individu-

ally opposite directions in principle. The two particles interact

with each other to reduce magnetic-field energy, so that they

tend to be in an equilibrium state.

In this study, we choose particle 1 to own electric charge Q,

and to serve as the boson in the conventional space Uc to sup-

ply the basic common motion. Quantities related to particle

1 itself are often specified by the use of 1a thereafter. Other

particles ν=0,2,3 possess the dipole moment Qd , and make

their motion on a common position of particle 1, as shown in

Fig. 2. The transfer matrix Uν from conventional Uc system

to relative systems (subspaces) Uν is simply chosen as

Uν =
{

γν for ν = 0,1,3
γν/i for ν = 2

. (2)

Variables with subscript are used for indicating actual real

values. Covariant properties8) are expressed by superscripted

variables, which include the imaginary unit i in some cases.

Defining superscripted values of gamma matrix γμ=γμ for

μ=0∼3, and γ5=γ5/i, where (γ0γμ)2 = 1 and (γ0γ5γμ)2 = 1,

we obtain the complex properties of variables, which are sum-

marized in Table 1.

III. Potential Generation and Propagation
We consider that the V- and AV-potentials propagate

through the flight of V- and AV-photons. The potentials are

treated to travel in the space Uc. All positions and velocities

(or momentums) are expressed in Uc for the potential genera-

tion and propagation. Suppose that two particles ρ and σ exist

at the same intrinsic time τ , where ρ takes a particle type in

1a+, 1a−, 0, 2 or 3, and σ also stands for one in those. When

potentials propagate from the particle σ at position
(
xμ

σV ,xμ
σA

)
to that of ρ at

(
xμ

ρV ,xμ
ρA

)
, the square of the difference of po-

sitions is written at the same intrinsic time τ by(
x0

ρV−x0
σV

)2
+∑
k=1∼3

(
xk

ρV−xk
σV

)2
+
(
x0

ρA−x0
σA

)2
+∑

k=1∼3

(
xk

ρA−xk
σA

)2
.

Table 1 Super/sub-scripted variables and matrix properties.

V motion AV motion(
x0

νV
xk

νV

)
=

(
x0,νV /i
xk,νV /i

)
, γ0γμ

(
x0

νA
xk

νA

)
=

(
x0,νA

xk,νA

)
, γ0γμ

(
p0

νV
pk

νV

)
=

(
p0,νV

pk,νV

)
, γ0γμ

(
p0

νA
pk

νA

)
=

(
ip0,νA

ipk,νA

)
, γ0γ5γμ

(
A0

νV
Ak

νV

)
=

(
iA0,νV

Ak,νV

)
, γ0γμ

(
A0

νA
Ak

νA

)
=

(
A0,νA

iAk,νA

)
, γ0γ5γμ

B̂0=−∑∂Aμ/∂xμ , 1 B̂0=−∑∂Aμ/∂xμ , −γ5

By the use of either retarded or advanced time τ ′=τ+ε , po-

tentials arrive at the position xρ at τ under the condition of(
x0

ρV−x′0σV

)2
+
(
xxxk

ρV−xxx′kσV

)2
+
(
x0

ρA−x′0σA

)2
+

(
xxxk

ρA−xxx′kσA

)2
= 0,

where dashed values indicate the positions at τ ′. Introduction

of a spatial distance dX and a field-traveling time one x0 f d
X

(X=V or A) changes the equation into

dX ≡
√(

xxxρX−xxx′σX

)2 = x0 f d
ρX − x′0 f d

σX , (3)

where

x0 f d
ρX − x′0 f d

σX ≡
√

−
(
x0

ρV−x′0σV

)2−
(
x0

ρA−x′0σA

)2−(
xxxρXc−xxx′σXc

)2
,

Xc =
{

A for X = V
V for X = A . (4)

In actual calculation, only increments ∂x0 f d
ρX and ∂x′0 f d

σX are

meaningful instead of x0 f d
ρX and x′0 f d

σX themselves. Variation

of the effective-time increment ∂x0 f d
ρX at the arrival position is

followed by the change in the potential generation position on

the basis of eq.(3) as

(dX )−1(xxxρX−xxx′σX
) ·(−∂xxx′σX/∂x′0 f d

σX

)
∂x′0 f d

σX =∂x0 f d
ρX −∂x′0 f d

σX .

The relativistic time ratio ∂x′0 f d
σX /∂x0 f d

ρX becomes to

∂x′0 f d
σX

∂x0 f d
ρX

=
1

1− (dX )−1 (
xxxρX−xxx′σX

)(
∂xxx′σX/∂x′0 f d

σX

) .

The potential propagating from the source to observation point

needs to be multiplied by this ratio. When differentiation by

cτ is expressed by “dot” on symbols, the value ∂xxx′σX/∂x′0 f d
σX

leads to ẋxx′σX/ẋ′0 f d
σX , which stands for the spatial velocity of

neutrino constituents with regards to the field-traveling time.

We follow the matrix-type definition in Table 1. For ex-

ample, momentum pμ
νX , where X=V or A, owns the matrix

property of γ0γμ for the V-type and γ0γ5γμ for AV-type. We

take that the total weak charge of neutrino system equals the

charge e of electromagnetic interaction. For particle ν , there-

fore, we adopt the charge Q=emν/∑ν mν , and the dipole mo-

ment Qd=Qh̄/pν , where h̄/pν is the de Broglie wave length

on spatial momentum for particle ν . In this study, the polari-

ties of Q and Qd are always taken to be fixed, and their vari-

ation in function is considered by means of apparent velocity

β μ
νX=pμ

νX/|mν |. The apparent velocity includes the mass in-

formation such as sm
ν eiζνA , where sm

ν is the mass polarity of

±1 and eiζνA indicates asymmetry6) assumed for Uc part (νb
in Fig.2) of particle ν . The charge and moment are considered

as the scalar values. The matrix type of Aμ
X to be generated is

treated as either γ0γμ , or γ0γ5γμ in accordance with the matrix

property of momentum.
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1. Potentials by QQQd motion
The Lagrangian density L̃X is constructed at an intrinsic

time τ . The density L̃X is considered to have basically the

same form for both X=V and A. There is a difference in poten-

tial treatment between sources of Qd and Q. The basic part of

the Lagrangian density L̃basX is common for potential sources

of Qd and Q and described as

L̃basX=
1

2μ0

(
∑

k=1∼3

Ek
X

c
Ek

X

c
+∑
k=1∼3

Bk
XBk

X−B̂0
XB̂0

X

)
− 1

μ0

B̂0
X ∑
μ=0∼3

∂Aμ
X

∂xμ
νX

, (5)

where simple subscripts are utilized here: ∂xμ
νX |μ=k = ∂xk

νX

and ∂xμ
νX |μ=0 = ∂x0 f d

νX as defined above. We adopt the Fermi

gauge for introduction of the scalar auxiliary field B̂0 in the

above Lagrangian density. The scalar field B̂0 acquires the

meaning of the electric/magnetic-like field in the time direc-

tion. The potential generated by dipole moment Qd is de-

scribed by the basic Lagrangian density minum interaction

terms VQdX as

L̃QdX = L̃basX −VQdX , (6)

where

VQdX = QdX ρνX cβ̂ 0
νX B̂0

X +QdX ρνX c ∑
k=1∼3

β k
νX Bk

X ,

QdV = Qd/i, QdA = Qd , (7)

β̂ 0
νV = 0, β k

νV = sm
ν ẋk

νV , β k
νA = sm

ν (1−δkκν )ẋk
νaA,

β̂ 0
νA =

√(
ẋκν

νA

)
2+χrev

νA ∑
k �=κν

(
ẋk

νA

)
2, χrev

νA =
{

0 for eiζνA=−1

1/2 for eiζνA=i
.

The symbol ρνX stands for the spatial particle density, κν =
0,3,2 for particles ν = 0,2,3, respectively.6) The symbolic ex-

pression of velocity is written as β k
νX = sm

ν ẋk
νX . We discrimi-

nate β k
νX of normal complex type from β κν ,rev

νX having reversed

complex type.6) When β κν ,rev
νX appears, its root-squared-sum

changes the matrix type into unit one through
(
γ0γk

)2 =1, and

accordingly makes an equivalent normal complex type time

velocity β̂ 0
νX . As in eq.(7), the product of β̂ 0

νX and B̂0
A gen-

erates the interaction energy in the equivalent time direction.

For the V-type, β 0
νX has no normal complex type value, and

is incapable of producing potential in the time direction. It

is noted that β̂ 0
νX in the AV-type retains the matrix of γ5 as

an exceptional treatment. That is, we consider that the root-

squared-sum operation deletes only the matrix properties of

γ0γk with
(
γ0γk

)2 =1 in original matrix properties of γ0γ5γk

in β κν ,rev
νA and γ5 remains outside the root.

The conventional procedure on partial differentiation of the

Lagrangian density defines the scalar field as

B̂0
X = − ∑

μ=0∼3

∂Aμ
νX

∂xμ
νX

−μ0QdX ρνX cβ̂ 0
νX . (8)

Use of this relation simplifies the potential propagation equa-

tion. The time-component and spatial parts of 4-vector poten-

tials are given by⎧⎨
⎩

�X A0
X=−μ0

∂
∂x0

νX

(
QdX ρνX cβ̂ 0

νX

)
,

�X AAAX=−μ0∇X×(QdX ρνX cβββ νX)−μ0∇X

(
QdX ρνX cβ̂ 0

νX

)
,

(9)

where �X is d’Alembertian working with position variables

xμ
νX , and the rotation ∇X× and gradient ∇X operators apply to

variables of xk
νX . It is noted that x0

νX in this context denotes

x0 f d
νX in the potential propagation.

Through the function of magnetic moment, the spatial ve-

locity βββ νX in eq. (9) generates a regular vector potential com-

ponent, which is written as Ak,reg
X . Besides this component,

the velocity β̂ 0
νX produces another potential component, i.e.,

Âμ
X in Aμ

X with description of Aμ
X=Aμ,reg

X +Âμ
X . Use of a scalar

function F̂0
X expresses Âμ

X as

Âμ
X = − ∂

∂xμ
νX

F̂0
X ,

�X F̂0
X = μ0QdX ρν cβ̂ 0

νX . (10)

Since ∇X × (
∇X F̂0

X
)
=0, it gives ∇X × ÂAAX=B̂BBX = 0: β̂ 0

νX
generates no magnetic field at all.

In addition, introduction of FFFreg
X into AAAreg

X description

makes the calculation straight-forward as

AAAreg
X = ∇×FFFreg

X ,

�X FFFreg
X = −μ0QdX ρνcβββ νX . (11)

2. Potentials by QQQ motion
The charge-type potential generation is applied on particle

1a± of V and AV-type, and particle 2 of AV-type with oppo-

site mass factor eiζνA =−1 in Uc motion (2b in Fig.2).6) The

Lagrangian density is written as

L̃QX = L̃basX −VQX , (12)

with

VQX = QdX ρνX cβ̂ 0
νX B̂0

X +QρνX c ∑
k=1∼3

β k
νX Ak

X ,

β̂ 0
νV = 0, β k

νV =
{

sπ
1aẋk

1aV π
sm

2 ẋk
2V

, , β̂ 0
νA =

⎧⎨
⎩

√
(ẋ3

1aAπ)2√
(ẋ3

2A)2
, (13)

β k
νA =

{
sπ

1aβ k
1Aπ

sm
2 (1−δk3)(χnor

2A ẋk
3A)

, χnor
2A = −1/2,.

where π = ±1 stands for particles ±1a and β̂ 0
νV is set at zero

for V-motion. The scalar field and 4-vector potentials are

again given by

B̂0
X=− ∑

μ=0∼3

∂Aμ
X

∂xμ
νX

−μ0QdX ρνX cβ̂ 0
νX , (14)

and⎧⎨
⎩

�X A0
X=−μ0

∂
∂x0

νX

(
QdX ρνX cβ̂ 0

νX

)
,

�X AAAX=−μ0QρνX cβββ νX−μ0∇X

(
QdX ρνX cβ̂ 0

νX

)
.

(15)

The V-motion of particle 1a makes A0
1aV = 0. Particle 1a

with charge Q produces the scalar field B̂0 in both V- and AV-

types through eq. (14).

3. Hamiltonian
The form of Hamiltonian density H̃em,X for the weak elec-

tromagnetic field is derived from the Lagrangian density, al-

though actual potential calculation is made by eqs. (8),(9),

(14) and (15). The canonical conjugate momentums are ex-

pressed by
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π0
X=

∂L
∂(∂A0

X/∂x0
X)

=−B̂0
X

μ0

, πk
X=

∂L
∂(∂Ak

X/∂x0
X)

=
1

μ0

Ek
X

c
, (16)

where X=V or A. These give the Hamiltonian density for

dipole-moment and charge type interactions as

H̃em,X = ∑
μ=0∼3

πμ
X

∂Aμ
X

∂x0
X
− L̃em,X (17)

=
1

2μ0

[
∑

k=1∼3

Ek
X

c

(
Ek

X

c
+2

∂A0
X

∂xk
X

)
− ∑

k=1∼3

Bk
XBk

X+B̂0
X ·
(̂
B0

X−2
∂A0

X

∂x0
X

)]

+

⎡
⎣QdX ρνX cβ̂ 0

νX B̂0
X +

⎧⎨
⎩

QdX ρνX c ∑
k=1∼3

β k
νX Bk

X

QρνX c ∑
k=1∼3

β k
νX Ak

X

⎤
⎦ ,

where the Hamiltonian density is composed of the field-

energy-density and interaction-energy-density terms. The first

one indicates the self-field energy density. The interaction be-

tween the scalar field B̂0 and equivalent time velocity β̂ 0 is

included in the interaction-energy-density term for the logical

consistency. This treatment is different from that in the pre-

vious work.5) The spatial integral of the field-energy density

on the particle location is considered to serve as the self-mass,

and the kinetic motion of the neutrino constituents should take

place to reproduce this self-mass.

IV. Test Calculation Result for Neutrino Mass

Table 2 Calculation example of constituent mass in units of

eV for neutrino total energy 1 MeV.

case 1 case 2

mass#1 1.54×102 1.39×102

mass#0 3.65×102 −3.47×102

mass#2 −3.67×102 3.49×102

mass#3 2.00×100 −1.80×100

total mass 1.5×102 1.4×102

total mass(obs.) 2.4×10−2 1.9×10−2

The electromagnetic field energies in the particle region by

eq. (17) serve as self-mass. A test calculation result of neu-

trino constituent mass is listed in Table 2, where the aver-

age radius of positive motion of particle 1a was commonly

set at a typical value of 106 fm. Constituent mass values

were searched by Monte Carlo method taking antisymmetriza-

tion of wave functions into consideration. The total kinetic

mass is chosen to be the same as the weak-electromagnetic

self-energy of the neutrino system. If individual-constituent

masses in Table 2 are factored by the ratio of total mass to

total energy, they are converted into the values in actual ob-

servation. The sum of converted values gives a total observed

mass below eV level as shown in the lowest line in the table.

General calculation with possibly less number of approxima-

tions will lead to a more realistic neutrino mass.

V. Conclusion
A neutrino is assumed to consist of four types of con-

stituent particles, and interaction potentials are generated by

weak charge and weak dipole moment in the Fermi gauge.
The system has momentums with matrix property of γ0γμ and

γ0γ5γμ . When reversed complex-type velocities appear, they

are converted into a value by root-squared-sum. The root-

squared-sum of γ0γμ changes the matrix type into unit one,

and make the equivalent time velocity β̂ 0
νX . This equivalent

velocity generates no magnetic field at all, but the product of

the velocity β̂ 0
νX and scalar field B̂0 produces the interaction

energy in the equivalent time direction. This interaction is ex-

cluded from the field-energy density, which should work as

the self-energy to be consistent with the kinetic mass. A test

calculation gave a neutrino mass below eV level.
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