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In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. 
However, only a few faulty sensors are found to be rectified. For the safe operation of an NPP and the reduction of 
unnecessary calibration, on-line calibration monitoring is needed. In this study, an on-line calibration monitoring 
called KPCSVR using k-means clustering and principal component based Auto-Associative support vector regression 
(PCSVR) is proposed for nuclear power plant. To reduce the training time of the model, k-means clustering method 
was used. Response surface methodology is employed to efficiently determine the optimal values of support vector 
regression hyperparameters. The proposed KPCSVR model was confirmed with actual plant data of Kori Nuclear 
Power Plant Unit 3 which were measured from the primary and secondary systems of the plant, and compared 
with the PCSVR model. By using data clustering, the average accuracy of PCSVR improved from 1.228×10-4 to 
0.472×10-4 and the average sensitivity of PCSVR from 0.0930 to 0.0909, which results in good detection of sensor 
drift. Moreover, the training time is greatly reduced from 123.5 to 31.5 sec.  
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I.  Introduction1

Considerable research efforts have been made to develop 
on-line calibration monitoring algorithms1). The Multivariate 
State Estimation Technique (MSET)2) was established in the 
late 1980s, and the Plant Evaluation and Analysis by Neural 
Operators (PEANO)3) was developed by Fantoni et al. It uses 
auto-associative neural networks (AANN) and the system 
has been applied to various plants around the world for 
equipment condition monitoring and sensor calibration 
monitoring. The system utilizes a client/server architecture
and a modular modeling structure. 

Recently, combined principal component analysis (PCA) 
and support vector regression (SVR) technique was applied 
to many prediction areas and showed good performance.4,5)

We developed a PCA-based auto-associative SVR 
(AASVR)6) for on-line monitoring and signal validation. It 
utilizes the attractive merits of principal component analysis 
for extracting predominant feature vectors and AASVR. 

In this study, we propose a KPCSVR which uses k-means 
clustering and PC based SVR (PCSVR) for signal validation 
in NPP. The purpose of this study is to improve the 
performance of the PCSVR in previous work. 

II.  Proposed KPCSVR 
The outputs of an auto-associative model are trained to 

emulate its inputs over an appropriate dynamic range. An
auto-associative model will estimate the correct input values 
using the correlations embedded in the model during its 
training. The estimated correct value from the auto- 
associative model can then be compared to the actual process 
parameter to determine if a sensor has drifted or has been 
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degraded by another fault type. Figure 1 shows the 
schematic diagram of the proposed KPCSVR method for 
modeling measurements in an NPP. 

Fig. 1 Schematic diagram of KPCSVR 

Two parameters, accuracy and sensitivity, were used for 
the performance evaluation of the algorithms.7) The accuracy 
metric is simply defined as the mean squared error (MSE) 
between the model’s predictions and the target values. The 
equation for a single variable is simply:  
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where n is the number of test observations, ix̂ is the model 
prediction of the ith test observation, and xi is the ith 
observation of the test data. Although this metric is termed 
"accuracy", it is actually a measure of error, and a low value 
is desired. A robust model would produce few to no changes 
in any of its outputs for errors in each of its inputs.  

Model sensitivity is generally defined as a measure of the 
change in the prediction of the ith variable ( ix̂ ) produced by 
a change in its respective input (xi):  
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Auto-sensitivity (SA) is a measure of an empirical model’s 
ability to make correct sensor predictions when its respective 
input sensor value is incorrect due to some sort of fault. 
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Therefore, this metric involves the following values: sensor 
i’s prediction with no fault in the input ix̂  , sensor i’s 
prediction with a faulted input drift

ix̂ , sensor i’s unfaulted 
input value xi, and sensor i’s drifted input value drift

ix . Using 
these definitions, the auto-sensitivity for sensor i is found 
with the following equation: 
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The next performance metric is cross-sensitivity (SC).
This value measures the effect a faulty sensor input (i) has 
on the predictions of sensor (j). This is illustrated by the 
above equation, in which j is the index of the unfaulted 
variable whose spillover metric is being calculated. 
1.  Data Grouping 

The computing time for training the PCSVR model 
increases exponentially as the number of training data points 
increases. To reduce the training time, we divided the 
available input data into subsets (groups) and then developed 
an individual PCSVR model for each group. 

A k-means clustering8) method (KCM) was used to group 
the available input data. KCM clustering is a clustering 
method that classifies one set of data into two or more 
groups. The aim of the KCM method is to minimize the 
following objective function:
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where p denotes the object in space, mi is the centroid of 
cluster Ci. The smaller E is, the more similar within group 
data is.  
2.  Principal Component Analysis 

In multivariate regression, highly correlated data could 
result in a multicolinearity problem and are prone to 
producing unstable regression estimates. It is desired to 
reduce the data to a smaller subset of predominant feature 
vectors that give rise to more stable estimates of regression 
coefficients. 

The PCA9) method involves linearly transforming the 
input space into an orthogonal space that can be chosen to be 
of a lower dimension with a minimal loss of information, 
and is used to reduce the dimension of an input space into 
the AASVR system. A lower dimensional input space will 
reduce the time necessary to train the AASVR system. The 
PCA method can be chosen as a method of preprocessing 
data to extract uncorrelated features from the data.  
3.  Signal validation by KPCSVR 

We used a KPCSVR method for the signal validation of 
the measurements in NPPs. The support vector machine 
(SVM) regression10) is to nonlinearly map the original data 
into a higher dimensional feature space. Hence, given a set 
of data mmn

iii RRyX 1,(  where xi is the input vector to 
support vector machines, yi is the actual output vector and n
is the total number of data patterns, the multivariate 
regression function for each output signal is approximated by 
the following function, 
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and m is the number of sensor measurements. Also, the 
function )(xi  is called the feature. Eq. (5) is a nonlinear 
regression model because the resulting hyper-surface is a 
nonlinear surface hanging over the m-dimensional input 
space. The parameters w and b are a support vector weight 
and a bias that are calculated by minimizing the following 
regularized risk function: 
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Fig. 2 The Parameters for the AASVR Models 

The first term of Eq. (6) characterizes the complexity of 
the SVR models. kC and k are user-specified parameters 
and ),( ikykL is called the -insensitive loss function.10)

The loss equals zero if the estimated value is within an error 
level, and for all other estimated points outside the error 
level, the loss is equal to the magnitude of the difference 
between the estimated value and the error level. That is, 
minimizing the regularized risk function is equivalent to 
minimizing the following constrained risk function: 
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where the constant C determines the trade-off between the 
flatness of )(xf and the amount up to which deviations 

larger than  are tolerated, and  and  are slack 
variables representing upper and lower constraints on the 
outputs of the system and are positive values. 

The constrained optimization problem can be solved by 
applying the Lagrange multiplier technique to Eqs. (8) and 
(9), and then by using a standard quadratic programming 
technique. Finally, the regression function of Eq. (5)
becomes 
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T

i is called the kernel function. 
By using different kernel functions for inner product 

evaluations, various types of nonlinear models in the original 
space could be constructed. It has been shown that, in 
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general, radial-basis function (RBF) is a reasonable first 
choice of kernel functions since it equips with more 
flexibility and less parameters. The RBF kernel function 
used in this paper is expressed as 
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where  is the kernel function parameter. 
The bias, b, is calculated as follows: 
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where xr and xs are called support vectors (SVs) and are data 
points positioned at the boundary of the -insensitivity 
zone. By replacing principal component  with x, we can 
combine PC and AASVR as follows: 
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The three most relevant design parameters for the 
AASVR model are the insensitivity zone, , the 
regularization parameter, C, and the kernel function 
parameter, . An increase in the insensitivity zone, ,
reduces the accuracy requirements of the approximation and 
allows a decrease in the number of SVs. In addition, an 
increase in the regularization parameter, C, reduces larger 
errors, thereby minimizing the approximation error. The 
kernel function parameter, , determines the sharpness of 
the radial basis kernel function. 

III.  Application to the NPP measurements 
1.  Experimental data 

The proposed algorithm was confirmed with the real plant 
startup data of the Kori Nuclear Power Plant Unit 3. These 
data are the values measured from the primary and 
secondary systems of the NPP. The data are derived from the 
following 11 types of measured signals: the reactor power 
(the ex-core neutron detector signal, Sensor 1); the 
pressurizer water level (Sensor 2); the SG steam flow rate 
(Sensor 3); the steam generator (SG) narrow range level 
(Sensor 4); the SG pressure (Sensor 5); the SG wide-range 
level (Sensor 6); the SG main feedwater flow rate (Sensor 7); 
the turbine power (Sensor 8); the charging flow rate (Sensor 
9); residual heat removal flow rate (Sensor 10); and the 
reactor head coolant temperature (Sensor 11).  

The data were sampled at a rate of 1 minute for about 38 
hours. The total observation number of measurement data is 
2,290 which was divided into five subsets of equal size, i.e., 
one subset for training, three subsets for optimization and 
one subset for test. Notice that data in all subsets were 
sampled at every 5 minutes. All the data subsets were 
normalized for the modeling called z1 through z5, and 
denormalized after the prediction process for the original 
signals back. We used KCM method to divide the available 
data into two groups and then developed a PCSVR model for 
each group. 

2.  Model parameter regularization by RSM  
To optimize the proposed KPCSVR model with response 

surface method (RSM), we used Central composite design 
(CCD) for experimental designs. In this study, there SVR 
hyper-parameters are assumed common in each AASVR 
model. For every experimental point, AASVR is constructed, 
and then the corresponding MSE is measured by 
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where ijz  is jth input value of ith sensor in the normalized 
scale, and ijẑ  is its AASVR estimator. The response 
surface plots of )log(MSE  versus  and  for two 
AASVR models are depicted in Fig. 3.
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(a) AASVR#1            (b) AASVR#2
Fig. 3 Response surface plot

The optimized parameters are as follows: 
=0.7818, =0.0005, C=6.7 for the 1st group 
=1.4, =0.0005, C=8.2 for the 2nd group 

3.  Test results 
Figure 4 shows accuracy and sensitivity of all 11 sensors 

for the PCSVR and the proposed KPCSVR. The average 
accuracy and sensitivity in normalized scale for KPCSVR is 
0.472×10-4 and 0.0909, respectively. While those for PCSVR 
are 1.228×10-4 and 0.0930 respectively. From the figures we 
can know that not all the accuracy and sensitivity for sensors 
are improved but their averages are smaller than those for 
PCSVR. The average accuracy is improved by 300% but 
only 2.3% in average sensitivity by the proposed algorithm.
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Fig. 4 Comparison of performance 

In order to investigate model sensitivity in Fig. 4(b), we
artificially degraded the SG main feed water flow rate signal 
in test data, as shown in Fig. 5(b). The degraded signal 
linearly increases at a rate of 3.14% per day from the first 
observation, i.e. 5% positive drift at the end of the 
observation.  
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Figure 5(a) shows relative prediction error of sensor 4 for 
the test data for two methods. The error for KPCSVR is 
much smaller than that for PCSVR, as shown in Fig. 4(a).
Figure 5(b) represents relative prediction error for the 
drifted sensor 7 signal. We can notice that KPCSVR 
produces a big error for the system transient measured at 
130th observation, even though the auto-sensitivity is better 
than that of PCSVR (see Fig. 4(b)). 
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Fig. 5 Comparison of prediction error 

Table 1 summarizes the performance of the proposed 
signal validation method for the 11 sensors. The results of 
the second data group are better those of the first data one.
This outcome appears to be due to more stable data 
measured between 370th and 458th observations, as shown 
in Fig. 5 (b). 

Table 1. Performance of the KPCSVR for 11 signals 
Data
Group Data type Number

of data
Avg. 

#
of SV 

# of
PC

Avg. 
training

time

Avg. 
accuracy

(×1.0e-5)

Avg. 
sensiti-

vity

1st 
group

Trn. data
Opt. data
Test data

234
702
234

173
-
-

5
16.8

-
- 5.04

-
-

0.094

2nd 
group

Trn. data
Opt. data
Test data

224
672
224

186
5

14.7
-
-

-
-

4.37

-
-

0.087
Total 2,290 359 31.5

Table 2. Comparison of signal validation methods for 11 signals

Methods Data type # of
data

# of
SV

Avg. 
training 

time(sec)
# of
PC

Avg. 
accuracy
×1.0e-04

Avg. 
sensiti-

vity

Proposed 
method

Trn. data
Opt. data
Test data

458
1374
458

359
-
-

31.5
-
-

5
-
-

-
-

0.472

-
-

0.0909

Previous 
work6)

Trn. data
Opt. data
Test data

458
1374
458

286
-
-

123.5
-
-

7
-
-

-
-

1.228

-
-

0.0930

Table 2 compares the proposed method with a previous 
result.6) As shown in this table, it was possible to improve the       

performance by dividing the data set by means of the KCM 
method and using a PCSVR for each data group. Especially, 
the training time was greatly reduced by using proposed 
KPCSVR. 

IV.  Conclusion 
A KPCSVR algorithm was proposed for the signal 

validation and calibration monitoring of NPP, which utilizes 
k-means clustering, PCA and AASVR for databased 
statistical learning.

The proposed KPCSVR model was applied to the data of 
Kori Nuclear Power Plant Unit 3, and the performance was 
compared with PCSVR in terms of accuracy and sensitivity. 
By using data clustering, the average accuracy of PCSVR 
improved from 1.228×10-4 to 0.472×10-4 and the average 
sensitivity of PCSVR from 0.0930 to 0.0909, which results 
in good detection of sensor drift. Moreover, the training time 
is greatly reduced from 123.5 to 31.5 sec. But it shows a 
little big error for the system transients. The proposed 
KPCSVR algorithm can therefore be used for the signal 
validation and calibration monitoring of NPP. 
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